
A combined sensitivity analysis and kriging surrogate modeling for
early validation of health indicators

Benjamin Lamoureux a,b,n, Nazih Mechbal a, Jean-Rémi Massé b

a Arts et Métiers ParisTech, PIMM UMR CNRS, Paris, France
b Snecma (SAFRAN group), Systems Division, France

a r t i c l e i n f o

Article history:
Received 4 March 2013
Received in revised form
24 January 2014
Accepted 23 March 2014
Available online 13 April 2014

Keywords:
Health monitoring
Health indicators
Degradation modeling
Validation
Uncertainties propagation
Sensitivity analysis
Surrogate modeling
Kriging

a b s t r a c t

To increase the dependability of complex systems, one solution is to assess their state of health
continuously through the monitoring of variables sensitive to potential degradation modes. When
computed in an operating environment, these variables, known as health indicators, are subject to many
uncertainties. Hence, the stochastic nature of health assessment combined with the lack of data in
design stages makes it difficult to evaluate the efficiency of a health indicator before the system enters
into service. This paper introduces a method for early validation of health indicators during the design
stages of a system development process. This method uses physics-based modeling and uncertainties
propagation to create simulated stochastic data. However, because of the large number of parameters
defining the model and its computation duration, the necessary runtime for uncertainties propagation is
prohibitive. Thus, kriging is used to obtain low computation time estimations of the model outputs.
Moreover, sensitivity analysis techniques are performed upstream to determine the hierarchization of
the model parameters and to reduce the dimension of the input space. The validation is based on three
types of numerical key performance indicators corresponding to the detection, identification and
prognostic processes. After having introduced and formalized the framework of uncertain systems
modeling and the different performance metrics, the issues of sensitivity analysis and surrogate
modeling are addressed. The method is subsequently applied to the validation of a set of health
indicators for the monitoring of an aircraft engine’s pumping unit.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Over the past decade, enhancing dependability has progressively
become one of the main challenges for many industries, especially in
the field of aeronautics. Indeed, a considerable portion of the average
operating expenses of airline companies is attributable to mainte-
nance, repair and overhaul (MRO) and delays and cancellations (D&C).
These expenses are of two types. The first type includes the costs
generated by regularly scheduled MRO operations, and the second are
those generated by unexpected MRO operations. The expenses asso-
ciated with the latter can be very high in certain situations, such as
when a failure occurs in an isolated, poorly equipped airport. In this
situation, additional expenses are generated because of spare parts
delivery, aircraft immobilization and passenger indemnification. If the
expenses related to regular maintenance are irreducible because they
are derived from certification authorities, the other expenses could
represent a source of significant savings if one could achieve increased

dependability. It is for this reason that industries are increasingly more
interested in failure anticipation and real-time maintenance strategy
optimization.

To predict failures and schedule supervised maintenance, a new
field of research, prognostic and health management (PHM), has
gradually emerged over the past decade as the unavoidable solu-
tion. This new field is receiving much attention from the research
community, as evidenced by [1–3] and references therein. PHM is
based on the monitoring of relevant variables reflecting the
different degradation modes likely to occur in the system. These
relevant variables are termed health indicators (HIs). A classical
PHM framework usually performs detection, identification and
prognostic. While different forms of the PHM process can be found,
the most commonly used, at least in the industry, is the open-
structure architecture for conditioned based maintenance (OSA-
CBM) scheme [4]. Although PHM is a quite recent discipline, it has
reached a certain maturity with the development of its own
standards, as shown in [5,6]. It has also been frequently applied
and has demonstrated good results, first in its original field of
application, structural health monitoring (SHM) [7], and later, in
other fields, such as bearing monitoring [8] and battery life
prediction [9]. The present work is dedicated to the monitoring of
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multi-physics complex systems with closed loop control, which is a
novel and relatively unexplored application of PHM.

A PHM system can be defined as an entity interacting, on the
one hand, with the complex system via an extraction process and,
on the other hand, with the maintenance system via a supervision
process (see Fig. 1). The purpose of the extraction process is to
provide the set of HIs to the PHM system. The purpose of the
supervision process is to assess the current health status of the
complex system, to predict its evolution and to propose corrective
or predictive actions to maintenance operators.

Whereas the supervision framework is the subject of many
papers, the extraction framework is rarely addressed because its
complexity is often underestimated. Indeed, at first glance, the
extraction simply consists of recording data, but the real difficulty
is to determine which data are to be recorded. Even if some
research has been conducted to define certain generic methods for
constructing HIs, such as parity space [10], most of these methods
are not adapted to overcome certain challenges, such as uncer-
tainties, imposed sensor numbers and locations, limited computa-
tion capabilities and prohibitive controller retrofit costs [11]. Thus,
when an actual system is considered, it is necessary to perform a
complete knowledge analysis to determine critical degradation
modes and to construct relevant physics based HIs that are
compatible with the sensor’s configuration and the computation
capabilities. These HIs also must be validated before the system
enters into service because of the controller retrofit costs. This last
point is the most critical because PHM processes are inherently
stochastic problems, and it is obviously difficult to validate some-
thing stochastic before the availability of measured in-service data.

To overcome this lack of data for the validation of HIs,
numerical modeling associated with a complete management of
parameters uncertainties [12] is used during design stages to
simulate the HIs distributions with and without degradations.
This operation requires a good knowledge of input uncertainties,
which is usually acquired through expertise and experience feed-
back from similar systems. Once both the healthy and faulty
distributions of HIs are computed, some numerical key perfor-
mance indicators (NKPIs) are computed to quantify the quality of
the HI set in terms of detection, identification and prognostic
potential. In the aeronautic industry, the NKPIs could account for a
major step forward as online data recording is very expensive.

However, the propagation of uncertainties presents two major
issues. First, in cases where the physics-based model is defined by
numerous parameters, the quantification of uncertainties can
rapidly become very time-demanding and expensive because it
needs to collect much knowledge from various sources. Then,
when the simulation runtime of the physics-based model is
important, for example, several minutes or hours, the computation
time required for uncertainties propagation becomes prohibitive.
This is all the more true as the PHM system is composed of nume-
rous HIs and numerous degradation modes. This paper proposes to

use a combination of sensitivity analysis techniques and kriging
surrogate modeling to solve both issues. Sensitivity analysis is
performed in two stages. First, after having roughly determined
the variation range of parameters, the Morris method is used to
achieve a reduction in the parameters’ space dimension. This
allows for determining the set of uncertain parameters that will
be the inputs of the kriging model. The computation of Sobol
indices is then performed to hierarchically sort the uncertain
parameters with respect to their effects on outputs. From this
hierarchization, we identify the most influent parameters on
which the fine uncertainties quantification are targeted. Kriging
is used to obtain a low computational cost function for estimating
the model outputs. Due to the reduction of input space provided
by the sensitivity analysis, the size of the learning design of
experiments is significantly reduced. Finally, both the computation
of Sobol indices and uncertainties propagation can be run on the
kriging model at reasonable computation time costs. Finally, the
efficiency of the whole method is tested on a real complex system,
namely, the pumping unit of an aircraft engine fuel system.

The remainder of the paper is organized as follows: In Section
2, the background of uncertain systems modeling are addressed
through specific definitions of key terms. The numerical key
performance indicators for HI validation in design stages are then
introduced. The Sections 3 and 4, respectively, are dedicated to the
sensitivity analysis and the surrogate modeling. Finally, Section 5
introduces the application system, and Section 6 presents and
discusses the results.

2. Uncertain systems modeling

In [13], uncertainty is defined as “the incompleteness in
knowledge and the inherent variability of the system and its
environment”. In this section, the modeling of a complex system
S accounting for uncertainties is addressed through specific
definitions of key terms

2.1. System modeling

2.1.1. Numerical model
We propose to represent the determinist model of a complex

system by the function f :

Y ¼ f ðU ;ρ1;…;ρpÞ ð1Þ

where U is the matrix of the model inputs, Y is the matrix of the
model outputs and ρ1;…;ρp are the model parameters. As the
numerical model is a discrete system, considering a sample period
equal to T and a simulation of k samples, the input and output
matrix is written as follows:

U ¼

u1ð0Þ … unð0Þ
u1ðTÞ … unðTÞ
⋮ ⋱ ⋮

u1ððk�1ÞTÞ … unððk�1ÞTÞ
u1ðkTÞ … unðkTÞ

������������

������������
Aℝk�n;

Y ¼

y1ð0Þ … ymð0Þ
y1ðTÞ … ymðTÞ
⋮ ⋱ ⋮

y1 ðk�1ÞTð Þ … ym ðk�1ÞTð Þ
y1ðkTÞ … ymðkTÞ

������������

������������
Aℝk�m ð2Þ

Fig. 1. Interaction scheme between the complex system, the PHM system and the
maintenance system.
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