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a b s t r a c t

This paper is to present a new design of robust Iterative Learning Control (ILC) for the purpose of output
tracking using continuous sliding mode technique. The main feature of the design is that the controller
signal is continuous due to the use of integral and employment of second-order sliding mode technique.
The proposed ILC is more robust to noises and disturbances than the saturation approximation of the tra-
ditional sliding mode control because the control amount required to maintain the region of convergence
is less. The robust ILC is suggested and the convergence of output-tracking error is also proven. The exper-
imental results have clearly exhibited the excellent output-tracking performance by the continuous sec-
ond-order sliding-mode-based robust iterative learning control.

� 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Iterative Learning Control (ILC) is a control strategy for systems
that execute the same trajectory, motion or operation repetitively.
ILC attempts to improve the transient responses by adjusting con-
trol inputs during next system operation based on the errors ob-
served in past operations.

Robustness, against uncertainties, time-varying, and/or stochas-
tic noises and disturbances, includes problems such as disturbance
rejection, and stochastic affects. Ref. [1] improves the ILC conver-
gence speed for time-varying linear systems with unknown and
bounded disturbances using the predicted errors. Time-periodic
and non-structured disturbances are compensated for in [2] using
a simple recursive technique. For general ideas about robust ILC,
refer to Moon et al. [3] for the linear systems and see [4–8] for
the nonlinear systems.

At present, the design of robust ILC often adopts standard H1
control techniques [9–11]; that is, given a system, an ILC controller
gain is calculated using H1 synthesis. According to Norrlof and
Gunnarsson [12], the main drawback of this approach is that the
obtained ILC controllers are causal and the strength of ILC is related
to the non-causality of its controllers. In recent years, more robust
ILC schemes have been addressed. Research papers related to this
topic can be found in [13–20], just to name a few.

Particularly, a robust ILC synthesizing learning control and slid-
ing mode technique with the help of Lyapunov direct method is

proposed in [7]. The learning control is applied to the structured
uncertainties while the variable structure scheme is to handle
the unknown and unstructured uncertainties to ensure the global
asymptotic stability. Another similar work is suggested in [21],
where a Learning Variable Structure Control (LVSC) is formalized
by combining variable structure control, as the robust part, and
learning control, as the intelligent part. The proposed LVSC system
achieves both uniform convergence of the tracking-error se-
quences to zero and that of the learning control sequences to the
equivalent control.

In the aforementioned two research papers, saturation func-
tions are employed to avoid discontinuity and eliminate the unde-
sired chattering caused by the traditional Sliding Mode Control
(SMC). This is because the discontinuous control signal will dam-
age actuators or control devices in practice. The problem is that
once the error signals excess the designated boundary layer, a sig-
num function is in charge of the control action. Hence, the satura-
tion function itself can reduce the chattering to an extent that
when the tracking-error signal is within the boundary. Therefore,
the saturation function cannot avoid the discontinuity completely.

Higher-order sliding mode technique is able to eliminate the
discontinuity with enhanced accuracy and robustness to distur-
bances [22–26]. In other words, compared with the saturation
approximation of the traditional SMC, second-order sliding mode
control is continuous and requires less amount of control efforts
to maintain the operation within the region of convergence due
to noises and disturbances.

This paper is to present and validate a robust ILC using contin-
uous second-order sliding mode technique so that control signals

0957-4158/$ - see front matter � 2012 Elsevier Ltd. All rights reserved.
doi:10.1016/j.mechatronics.2011.12.005

⇑ Corresponding author.
E-mail address: wchenc@wayne.edu (W. Chen).

Mechatronics 22 (2012) 588–593

Contents lists available at SciVerse ScienceDirect

Mechatronics

journal homepage: www.elsevier .com/ locate /mechatronics

http://dx.doi.org/10.1016/j.mechatronics.2011.12.005
mailto:wchenc@wayne.edu
http://dx.doi.org/10.1016/j.mechatronics.2011.12.005
http://www.sciencedirect.com/science/journal/09574158
http://www.elsevier.com/locate/mechatronics


are continuous and therefore chattering is reduced; thus, the con-
tinuous robust ILC can be applied broadly without damaging actu-
ation devices.

This paper is organized as follows: in Section 2, the considered
nonlinear system is illustrated and the objective of this paper is also
addressed. The sliding surface and the controller design are described
in Section 3. The convergence of the output-tracking error is also pro-
ven using Lyapunov direct method in the same section. An experi-
ment is included to demonstrate the effectiveness of the proposed
robust ILC. At last, concluding remarks are made in Section 5.

2. System formulation

Consider the following higher-order single-input and single-
output nonlinear dynamical system described by

_xiðtÞ ¼ xiþ1ðtÞ; i ¼ 1; . . . ;m� 1;
_xmðtÞ ¼ h>ðtÞnðx; tÞ þ bðx; tÞuðtÞ þ dðtÞ;

ð1Þ

where the measurable system state x(t) = [x1,x2, . . . ,xm]>, u(t) and
y(t) are the control input and system output, respectively, b(x, t) is
a known non-zero function, h(t) is a p � 1 unknown and time-vary-
ing function to be learnt, n(x, t) is a known vector-valued function
with dimension of p � 1. The variable d(t) represents the unknown
disturbance.

Assumption 1. The desired output trajectory yd(t) is differentiable
with respect to time t up to the mth order on a finite time interval
[0,T], and all of the higher-order derivatives are available.

Assumption 2. The unknown disturbance variable d(t) is bounded
such that

jdðtÞj 6 bd; 8t 2 ½0; T�;

where bd is a known positive constant.

Assumption 3. The initial condition e(0) = ė(0) = ë(0) = � � � =
e(m)(0) = 0 at any iteration "t 2 [0,T], such that the sliding surface
r(0) = 0, where e(t) is the output tracking error that is defined as
e(t) = yd(t) � y(t).

The control objective is to design a continuous second-order
sliding-mode iterative learning controller, u(t), for the uncertain
nonlinear system (1) such that system output can follow a desired
one with a prescribed accuracy � as follows:

8t 2 ½0; T�; jydðtÞ � yðtÞj 6 �:

3. Main results

The underlying robust ILC is to learn and approach the un-
known and time-varying function and leave the remaining un-
known function to the robust control. The global asymptotic
convergence with respect to iterations is established by Lyapunov
direct method.

3.1. Derivation of sliding surface

For the considered system (1), a sliding surface dynamics is de-
fined as follows:

rðtÞ ¼ c1eðtÞ þ c2 _eðtÞ þ � � � þ cmeðm�1Þ ¼
Xm

i¼1

cieði�1Þ; ð2Þ

where cm = 1,ci, s(i = 1, . . . ,m � 1) are coefficients of a Hurwitz poly-
nomial, and e(t) = yd(t) � y(t) = yd(t) � x1(t).

Taking derivatives with respect to time t on both sides of (2), it
is obtained:

_rðtÞ ¼ c1 _eðtÞ þ c2€eðtÞ þ � � � þ cmeðmÞ ¼
Xm

i¼1

cieðiÞ: ð3Þ

Considering the fact that e(t) = yd(t) � x1(t), the above equation
can be further expanded:

_rðtÞ ¼ c1½ _ydðtÞ � x2ðtÞ� þ c2½€ydðtÞ � x3ðtÞ� þ � � �

þ yðmÞd ðtÞ � h>ðtÞnðx; tÞ � bðx; tÞuðtÞ � dðtÞ
h i

¼
Xm

i¼1

ciy
ðiÞ
d �

Xm�1

i¼1

cixiþ1 � h>ðtÞnðx; tÞ � bðx; tÞuðtÞ � dðtÞ: ð4Þ

The above equation can be further interpreted as the sliding var-
iable dynamics. The condition, r(t) = 0, defines the system motion on
the sliding surface. The control signal, u(t), is to be designed as an
iterative and continuous control input signal. The task of this work
is to design such a continuous and iterative control input to steer
the sliding surface to be convergent to a region in finite time interval.

3.2. Design of the robust ILC using integral and continuous sliding
mode technique

In Levant [24] and Levant [23], the second-order sliding-mode
concept is originated. It is further developed in [25]. In reference
to these work, an ILC via continuous second-order sliding-mode
concept, at kth iteration, is designed as follows:

ukðtÞ¼b�1ðxk;tÞ
Xm

i¼1

ciy
ðiÞ
d ðtÞ�

Xm�1

i¼1

cixiþ1;k� ĥ>k ðtÞnðxk;tÞ�vkðtÞþa1 jrkj
2
3 sgnðrkÞþa3rkðtÞ

 !
;

ð5Þ

where k indicates the number of iterations, xk(t) = [x1,k,x2,k, . . . ,xm,k]> ,
a1, a2, and a3 are positive constants, j�j is the absolute value, sgn is the
signum function, ĥðtÞ is the recursive control part that is used to learn
the unknown function h(t) and generated by the following update
law

ĥkðtÞ ¼ ĥk�1ðtÞ � qnðxk; tÞ
4g
3
jrkj

1
3 sgn ðrkÞ þ crkðtÞ

� �
; ð6Þ

where q, g and c are positive constants.
The variable v(t) is an integral term that is defined below:

_vkðtÞ ¼ �b1rkðtÞ � b2jrkj
1
3 sgn ðrkÞ; ð7Þ

where b1 and b2 are positive constants.

Remark 1. Controller (5), together with (6) and (7), defines the
continuous second-order sliding-mode ILC because jrkjs/3 sgn(rk),
where s = 1, 2, are two continuous functions. Moreover, jrkj1/3

sgn(rk) is integrated in (7) such that v(t) is absolutely a continuous
function. In summary, controller (5) is a continuous signal; it
therefore leads to a chattering-free control action.

Therefore, the sliding surface dynamics (4) can be simplified by
inserting the ILC law (5):

_rkðtÞ ¼ �a3rkðtÞ þU>k ðtÞnðxk; tÞ þ vkðtÞ � dkðtÞ

� a1jrkj
2
3 sgnðrkÞ; ð8Þ

where UkðtÞ ¼ ĥkðtÞ � hðtÞ.
The sliding surface dynamics (8) implies that the integral term

v(t) is used to attenuate the effect of the unknown disturbance d(t).

Remark 2. According to Brown et al. [26], the second-order SMC is
more robust to noises and disturbances than the saturation
approximation of the traditional SMC because the control amount
required to maintain the region of convergence is less.
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