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For industrial nonlinear batch processes that can be practically divided into a series of piecewise
affine operating regions, a two-dimensional (2D) closed-loop iterative learning control (ILC) method is
proposed for robust tracking of the set-point profile against cycle-to-cycle process uncertainties and load
disturbances. Both state feedback and output feedback are considered for the control design, together with
the process input and output constraints for implementation. Based on a 2D system description for the
batch operation, a few synthetic performance and robust control objectives are proposed for developing
the 2D ILC schemes, in combination with the 2D Lyapunov-Krasovskii functions that can guarantee
monotonic state energy (or output error) decrease in both the time (during a cycle) and batch (from
cycle to cycle) directions. Both the polyhedral and norm-bounded descriptions of process uncertainties
are considered to derive the corresponding linear matrix inequality (LMI) conditions for the closed-
loop ILC system robust stability. An important merit of these LMI conditions is that there are adjustable
convergence indices prescribed for both the time and batch directions, and an adjustable robust control
performance level for the closed-loop system. By specifying/optimizing these adjustable parameters
to solve these LMI conditions, the 2D ILC controller can be explicitly derived for implementation. The
application to a highly nonlinear continuous stirred tank reactor (CSTR) is shown to illustrate the
effectiveness and merits of the proposed ILC method.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Industrial and chemical batch processes with a wide range
of operating conditions are generally nonlinear and therefore
have been widely concerned for advanced control design to
obtain the desired system performance such as perfect tracking
of the set-point profile to guarantee good product quality and
consistency. To avoid the difficulties in model identification for
control system design or to overcome the deficiencies of existing
model-based control methods that cannot eliminate unexpected
dynamic output response errors from cycle to cycle, iterative
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learning control (ILC) methods have been increasingly developed
in recent years to realize perfect tracking and control optimization
(Wang, Gao, & Doyle, 2009). This methodology is in principle based
on using repetitive operation information of a batch process from
historical cycles to progressively improve tracking performance
from cycle to cycle. As surveyed in the recent literature (Ahn,
Chen, & Moore, 2007; Bonvin, Srinivasan, & Hunkeler, 2006; Wang
et al., 2009), most reported studies have been devoted to ILC
methods for time-invariant linear or nonlinear batch processes. In
fact, many batch processes, e.g., the membrane filtration process
and pharmaceutical crystallization, are slowly time-varying from
cycle to cycle, while repeating fundamental dynamic response
characteristics or subject to repetitive and/or non-repetitive load
disturbance (Busch, Cruse, & Marquardt, 2007; Nagy, Chew,
Fujiwara, & Braatz, 2008). ILC methods based on using time-
invariant process information cannot maintain robust stability for
such batch processes (Rogers, Galkowski, & Owens, 2007). As far
as we know, only a few papers have reported robust ILC methods
for nonlinear batch processes with time-varying uncertainties. For
uncertain nonlinear systems with specific structural properties
or uncertainty types, adaptive ILC schemes have been developed
to ensure the boundedness or asymptotic convergence of the
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set-point tracking error (Chien & Yao, 2004; Qu & Xu, 2002).
A Lyapunov-based adaptive ILC scheme was proposed by Tayebi
and Chien (2007) for the cycling operation with time-varying
uncertainties. Xu and Tan (2002) suggested a composite energy
function (CEF) to analyze the ILC system stability for a class of
nonlinear systems with time-varying parametric uncertainties. For
highly nonlinear batch processes, robust ILC schemes based on
specific nonlinear model structures were proposed to guarantee
batch-to-batch stability while complying with the process input
constraints (Hermanto, Braatz, & Chiu, 2011; Nagy, Mahn, Franke,
& Allgéwer, 2007), and a comparison between several nonlinear
model structures for the ILC design was made by Nagy and Braatz
(2007).

It has been widely recognized that many industrial nonlinear
processes including batch processes can be decomposed into
a series of linearized operating regions for system operation.
Accordingly, piecewise affine control strategies, called linear
parameter varying (LPV) control or gain-scheduling control (using
multiple linear models), have been explored for robust control of
such nonlinear processes (Forni & Galeani, 2010; Lu & Arkun, 2002;
Ozkan, Kothare, & Georgakis, 2003; Park & Jeong, 2004; Rugh &
Shamma, 2000; Wan & Kothare, 2003, 2004, 2008). Due to the fact
that the control system robust stability for batch process operation
is required for both the time (during a cycle) and batch (from
cycle to cycle) directions (Galkowski, Rogers, Xu, Lam, & Owens,
2002; Owens, Amann, Rogers, & French, 2000), the above control
methods cannot be extended to nonlinear batch processes. It
should be noted that for linear batch processes with uncertainties,
two-dimensional (2D) robust ILC methods have been developed in
recent years to address the control system robust stability in both
the time and batch directions. However, these ILC methods have
been mainly focused on robust tracking for linear batch processes
subject to time-invariant or slowly varying (but cycle-to-cycle
invariant) uncertainties and load disturbance (Wang et al., 2009).
To cope with cycle-to-cycle varying process uncertainties, recent
papers (Liu & Gao, 2010; Shi, Gao, & Wu, 2005, 2006) developed
robust 2D ILC methods based on the output feedback and the norm-
bounded description of process uncertainties. To enhance system
performance against non-repetitive load disturbance, alternative
on-line adaptive ILC schemes have been presented for practical
implementation and performance improvement (Chen & Kong,
2009; Chin, Qin, Lee, & Cho, 2004; Zhang, 2008).

In this paper, a synthetic robust 2D ILC method is proposed
for nonlinear batch processes that can be practically divided
into a series of piecewise affine operating regions. Based on a
2D system description of the process for operation, including
the time response within a cycle (denoted by t) and the batch
operation from cycle to cycle (denoted by k), both time-varying
process uncertainties and non-repetitive load disturbance are
considered in the control design, together with the process
input and output constraints for implementation. By defining
the convergence indices for both the time and batch directions,
and introducing the desired performance objective or robust
control objective in combination with the 2D Lyapunov-Krasovskii
functions that can guarantee monotonic state energy (or output
error) decrease in both the time and batch directions, linear matrix
inequality (LMI) conditions are correspondingly established for
the ILC controller design and performance optimization. In these
LMI conditions, there are adjustable convergence indices for the
time and batch directions, and an adjustable closed-loop robust
control performance level. For the convenience of implementation,
the control algorithms and stability conditions are detailed for
the use of state feedback and output feedback, respectively. The
effectiveness of the proposed ILC method is demonstrated through
the application to a highly nonlinear continuous stirred tank
reactor (CSTR) subject to cycle-to-cycle uncertainties and load

disturbance. For clarity, the paper is organized as follows: Section 2
briefly presents a piecewise model description of a nonlinear batch
process, together with the process input and output constraints.
In Section 3, an equivalent 2D system representation of such a
batch process is formulated for the ILC design, along with some
definitions and lemmas for the analysis of control performance and
robust stability. In Section 4, two 2D ILC schemes are presented
for the use of state feedback and output feedback, respectively.
With the polyhedral or norm-bounded description of process
uncertainties, the corresponding robust stability theorems are
given for the 2D ILC design. Section 5 discusses how the process
input and output constraints can be considered in the control
algorithms for system performance optimization or robust control.
Section 6 shows the application to a piecewise affine batch process
of CSTR with different disturbance tests. Finally, conclusions are
drawn in Section 7.

Throughout this paper, the following notations are used: R"*™
denotes an x m real matrix space. For any matrix P € R™™ P >
0 (or P > 0) means P is a positive (or semipositive) definite
symmetric matrix, in which the symmetric elements are indicated
as ‘«. PT denotes the transpose of P. For any vector, x > 0 (or
x > 0) means all elements of x are positive (or nonnegative). All
vector inequalities are interpreted in an element-wise sense. For
any vector x and matrix P > 0, denote Vp(x) = ||x||,21 = xTPx. The
identity vector/matrix and the zero vector/matrix with appropriate
dimensions are denoted by I and 0, respectively. For a 2D signal,
z(t, k), if ||lz(t, )], = \/Z?:O S llz (e, |?> < oo for any
integers n and m, then z(t, k) is said to be in the L,[0, o0) space
of all square integrable functions. Denote by Co a convex hull, an
element belonging to Co{-} means that it is a convex combination
of all the elements in {-} multiplied by nonnegative weighting
coefficients of which the sum equals unity.

2. Piecewise linear model description of a nonlinear batch
process

Consider a nonlinear batch process that can be practically
divided into a series of piecewise affine operating regions,

x(t, k) = f[x(t, k), u(t, k)1;

V() =glx(t. D], 0=t =Ty :
y(t, k) e 2 =UL, 2; (1)
x(0,k) =x0), k=1,2,....

where x(t, k) € N™, y(t, k) € NV, u(t, k) € R™, t and k denotes
the time and cycle indices, respectively. 2 C N denotes the real
space of the output response, which includes m piecewise affine
operating regions denoted by £2; (i = 1, 2, ..., m). T, is the cycling
time, and x(0) denotes the initial resetting condition of each cycle
that may be reset to zero with respect to each affine operating
region for the convenience of control design.

A typical scenario of linearizing the nonlinear batch process
in (1) with respect to a number of equilibrium operating points
(i * ulll i=1,2,... m)is

eq’ “eq’
wlil (il [l of [il [l [i]
XU, k) = f(xeqs Ueg) + 5()(8(1, Ueg) AX (L, k)
0 . . .
+ a*{,("g‘]l’ uly) Aull(e, k)

) . og i
W k) =gl + 5 ok axie. o

Ax(E, k) = x(t, k) — x (¢, k),

Aull(t, k) = u(t, k) — ulld (¢, k).

Alternatively, such linear affine models can be derived using a
piecewise model identification method (Liu & Gao, 2012; Ljung,
1999).

(2)
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