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An integrated iterative learning control strategy with model identification and dynamic R-parameter
is proposed in this paper. It systematically integrates discrete-time (batch-axis) information and
continuous-time (time-axis) information into one uniform frame, namely the iterative learning con-
troller in the domain of batch-axis, while a PID controller (PIDC) in the domain of time-axis. As a result,

the operation policy of batch process can be regulated during one batch, which leads to superior tracking
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performance and better robustness against disturbance and uncertainty. Moreover, the technologies of
model identification and dynamic R-parameter are employed to make zero-error tracking possible. Next,
the convergence and tracking performance of the proposed learning control system are firstly given rig-
orous description and proof. Lastly, the effectiveness of the proposed method is verified by examples.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Batch processes have been used increasingly in the produc-
tion of low volume and high value added products, such as special
polymers, special chemicals, pharmaceuticals, and heat treatment
processes for metallic or ceramic products [1]. For the purpose of
deriving the maximum benefit from batch processes, it is essential
to optimize the operation policy of batch processes. Therefore, opti-
mal control is crucial to the efficient operation of batch processes.
However, with strong nonlinearity and dynamic characteristics,
optimal control of batch processes is more challenging than that of
continuous processes and thus it needs new non-traditional tech-
niques. Therefore, the optimal control of batch processes remains
a challenging in modern industrial control.

Batch processes have the characteristic of repetition, and thus
iterative learning control (ILC) can be used in the optimization
control of batch processes [2-4]. After its initial development
for industrial robot [5], ILC has been increasingly practiced for
batch processes with repetitive natures to realize perfect track-
ing and control optimization [6,7]. Xiong and Zhang presented a
batch-to-batch iterative optimal control method based on recur-
rent neural network models to solve the model prediction errors
problem [8]. Lee et al. proposed the optimal iterative learning
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algorithm based on linear time-varying models for the tempera-
ture control of batch processes [9,10]. However, in most reported
results, only the batch-to-batch performance is taken for consid-
eration but not the performance of real-time feedback. Thus, ILC
is actually an open-loop control from the view of a separate batch
because the feedback-like control just plays role between differ-
ent batches. As a result, it is difficult to guarantee the performance
of the batch process when uncertainties and disturbances exist.
Therefore, an integrated optimization control system is required
to derive the maximum benefit from batch processes, in which
the performance of time-axis and batch-axis are both analyzed
synchronously. Rogers firstly employed two-dimension (2D) the-
ory to solve above-mentioned problem [11]. Li et al. presented an
ILC strategy for 2D time-invariant linear repetitive systems with
fixed time delays [12]. Chin et al. proposed a two-stage iterative
learning control technique by using the real-time feedback infor-
mation to modify the ILC parameters for independent disturbance
rejection [13]. Gao’s research group did a series of 2D optimization
control-based research for batch processes [14,15]. However, most
reported results assume that the prediction errors of the model
were zeros after the first cycle without considering model uncer-
tainties and exogenous disturbance [16]. Liu et al. combined the
internal model control (IMC) with the ILC to deal with uncertain
time delay for linear batch processes [17]. To guarantee robust con-
vergence along both time and batch directions, a 2D ILC scheme
which integrates feedback control with feedforward control was
developed for robust tracking of desired trajectory [18]. Recently,


dx.doi.org/10.1016/j.jprocont.2013.09.011
http://www.sciencedirect.com/science/journal/09591524
http://www.elsevier.com/locate/jprocont
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jprocont.2013.09.011&domain=pdf
mailto:jiali@staff.shu.edu.cn
dx.doi.org/10.1016/j.jprocont.2013.09.011

L. Jia et al. / Journal of Process Control 23 (2013) 1332-1341 1333

Nomenclature

k batch index

te batch run length

Vd specified reference trajectory
ull“(t)  input variable under ILC method

uP'PC(t) input variable under PIDC method

u(t) integrated input variable

Yi(t) output variable

Pi(t) predicted output of data-based model

y(US, t;) output variable of end-point product qualities
under ILC method

J(UC, t;) predicted output variable of data-based model
under ILC method

e(Uy, tf) tracking error of end-point product qualities under
integrated method

e(U, tr) tracking error of end-point product qualities

under ILC method

é(ULLC, tp) tracking error of data-based model under ILC
method

U, integrated input at the kth batch run

U’ control sequence obtained from ILC controller at the
kth batch run

UEIDC control sequence computed from PID controller at
the kth batch run

Y measured product quality sequence at the kth batch
run

Y, predicted product quality sequence at the kth batch
run

Q weighting matrix for tracking error in ILC

Rii1 weighting matrix for control change in ILC

£ small positive constant

Wang et al. proposed an advanced ILC-based PI control for MIMO
batch processes to hold robust stability based on a 2D system
formulation [19]. For piecewise affine batch processes, Liu et al.
proposed a 2D closed-loop ILC method for robust tracking of the
set-point profile against uncertainties and disturbances [20].

Motivated by previous works, an integrated iterative learning
control system combining discrete-time (batch-axis) information
with continuous-time (time-axis) information is proposed in our
recent work [21]. Similar to most new controller design methods
developed inthe literature, perfect model assumptionis assumed in
that work in order to develop the first of its kind that guarantees the
convergence of control policy with the proposed integrated control
scheme derived from a rigorous proof. But in practical application,
model-plant mismatch is inevitable. Thus with the consideration
of mode-plant mismatch and uncertainty, an integrated iterative
learning control strategy with model identification and dynamic
R-parameter is proposed in this paper. It systematically integrates
discrete-time (batch-axis) information and continuous-time (time-
axis) information into one uniform frame, namely the iterative
learning controller in the domain of batch-axis, while an PID con-
troller (PIDC) in the domain of time-axis. As a result, the batch
process can be regulated during one batch, which leads to superior
tracking performance and better robustness against disturbance
and uncertainty. Moreover, the technologies of model identifica-
tion and dynamic R-parameter are employed to make zero-error
tracking possible. Next the convergence and tracking performance
of the proposed iterative learning control system are firstly given
rigorous description and proof.

The paper is structured as follows. Section 2 gives a brief descrip-
tion of batch processes discussed in this paper. Section 3 presents
the proposed integrated learning control system. Performance

analysis is presented in Section 4 and the simulation example is
given in Section 5, followed by the concluding remarks given in
Section 6.

2. The description of batch processes

A batch process is referred to a process repetitively performing
a specified task over a certain period of time named as cycle. In
this paper, the discussed batch process can be described by the
following state-space representation

Xi(t) = AX(t) + Buy(t)
= [Ap + AAJXy(t) + [Bo + ABJuy(t)

Yi(t) = Cx(t)
X (0) =x9, k=1,2,...

where tand k denote time and cycle indices, respectively. X, (t), u(t)
and y,(t) are, respectively, the state, the control input and the batch
process output at time tin kth cycle, and xq is the initial state of each
cycle. Ag, Bg, C are known real constant matrices with appropriate
dimensions, AA and AB denote time-varying uncertainties in the
system model, and are assumed to be bounded naturally.

3. Integrated iterative learning control strategy with model
identification and dynamic R-parameter for batch processes

The formulation of the proposed integrated iterative learn-
ing control strategy with model identification and dynamic
R-parameter is depicted in Fig. 1, where k, u,(t) and y,(t) are same
as those defined in Section 2, y4(t) is desired product quality, u}-(t)
and uf'®(t) are ILC control action variable and PIDC control action
variable, and uy(t) = ul-S(t) + uP'P<(t). e\(t) represents the error
between the measured output and the desired product quality.
Batch length is defined as . Here the batch length tsis divided into L
equal intervals. G(s) denotes the batch process, and C(s) represents
the PID controller.

Define that U is the integrated input sequence of kth batch,
which consists of the control policy of U} obtained from ILC opti-

mization controller and the control policy of UEIDC computed from

PIDC controller. Y, and ¥, are the corresponding product quality
sequence and predicted product quality sequence. In the proposed
integrated iterative learning control system, Uy, Y, and Y, are
stored to eliminate the model-plant mismatch. Based on the infor-
mation from previous batch, the optimization controller can find an
updating mechanism for the input sequence U}}C of the new batch
using improved iterative optimal control law derived by the rigor-
ous mathematic proof method discussed shortly. At next batch, this
procedure is repeated to let the product qualities asymptotically
converge toward y,(tr) at the batch end.

3.1. Integrated iterative learning control system with dynamic
R-parameter

As discussed above, the proposed integrated learning optimiza-
tion control action can be described as

U, = U+ UpPc )

Owing to the model-plant mismatch, the process output may
not be same as the one predicted by the model. The offset between
the measured output and the model prediction is termed as model
prediction error defined by

ex(t) = yi(t) = Ji(t) (3)
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