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a  b  s  t  r  a  c  t

Iterative  learning  control  (ILC)  is suitable  for  systems  that  are  able  to repeatedly  complete  several  tasks
over a  fixed  time  interval.  Since  it was  first  proposed,  ILC  has  been  further  developed  through  extensive
efforts.  However,  there  are  few  related  results  on systems  with  stochastic  signals,  where  by  stochastic
signal  we  mean  one  that is described  by  a  random  variable.  Stochastic  iterative  learning  control  (SILC)  is
defined  as ILC  for  systems  that  contain  stochastic  signals  including  system  noises,  measurement  noises,
random  packet  losses,  etc.  This  manuscript  surveys  the  current  state  of the art  in  SILC  from  the perspective
of  key  techniques,  which  are  divided  into  three  parts:  SILC  for linear  stochastic  systems,  SILC  for  nonlinear
stochastic  systems,  and  systems  with  other  stochastic  signals.  In addition,  three  promising  directions
are  also  provided,  namely  stochastic  ILC  for  point-to-point  control,  stochastic  ILC  for  iteration-varying
reference  tracking,  and  decentralized/distributed  coordinated  stochastic  ILC,  respectively.

©  2014  Published  by  Elsevier  Ltd.

1. Introduction

In our daily lives, the ability to repeatedly work on a given task
would lead to constant improvements. For example, in basketball
set shooting, as the number of attempts increases, the shooter is
able to increase the hit ratio since he/she may adjust the angle
and speed to reduce the shooting deviation shot by shot. The basic
reason for this is that we are able to learn from experiences and
subsequently improve our behaviors.

This basic cognition has motivated research on iterative learn-
ing control (ILC). That is, ILC is a control method that improves
its control performance by learning from previous control perfor-
mance. Specifically, ILC is usually designed for systems that are able
to complete some task over a fixed time interval and perform them
repeatedly. In such systems, the input and output information of
past cycles, as well as the tracking objective, are used to formu-
late the input signal for the next iteration, so that the tracking
performance can be improved as the number of cycles increases to
infinity. Thus, ILC has the following features: (1) the system can fin-
ish a task in a limited time, (2) the system can be reset to the same
initial value, and (3) the tracking objective is iteration-invariant.
The main idea of ILC is shown in Fig. 1.

In Fig. 1, yd denotes the reference trajectory. Based on the input
of the kth iteration, uk, as well as the tracking error ek = yd − yk, the
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input uk+1 for the next iteration, i.e., the (k + 1)th iteration, is con-
structed. Meanwhile, the input uk+1 is also stored into the memory
for the (k + 2)th iteration. Thus, a closed loop feedback is formed
along the iteration index.

By comparing ILC with our daily lives, we  find that the previ-
ous information on inputs and outputs of the plant corresponds to
the experiences faced in our daily lives. Persons usually decide on
a strategy for a given task based on previous experiences, while
the strategy here is equivalent to the input signal of ILC. Note that
the previous experiences would help us to improve our behavior;
thus, it is reasonable to believe that information on the previous
operation may  help to improve the control performance to some
extent.

The major advantage of ILC is that the design of control law only
requires the tracking references and input/output signals. In other
words, not much information about the plant is required and it may
even be completely unknown. However, the algorithm is simple
and effective.

It is important to note that ILC adjusts the control along
the iteration index rather than the time index, which is the
main difference with other control methods such as proportional-
integral-derivative (PID) control. PID control is a widely used
feedback control. However, for iteration type systems, PID gener-
ates the same tracking error during each iteration since no previous
information is used, while ILC reduces the tracking error iteration
by iteration. Additionally, ILC differs from adaptive control, which
also learns from previous operation information. Adaptive control
aims to adjust the parameter of a given controller, while ILC aims
to construct the input signal directly.
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Fig. 1. Framework of ILC.

The concept of ILC may  be traced back to a paper published
in 1978 by Uchiyama [1]. However, this paper failed to attract
widespread attention as it was written in Japanese. Three papers
that were published in 1984 [2–4] resulted in further the research
on ILC. Subsequently, large amounts of literature have been pub-
lished on various related issues, such as research monographs
[5–9], survey papers [10–12], and special issues of academic jour-
nals [13–16]. ILC has recently become an important branch of
intelligent control, and its use is widespread in many practical
applications such as robotics [17–20], hard disk drives [21,22], and
industrial processes [23,24].

1.1. Background of ILC

In this subsection, basic formulations of ILC are given, followed
by some traditional convergence results. Consider the following
discrete-time linear time-invariant system

x(t + 1, k) = Ax(t, k) + Bu(t, k)

y(t, k) = Cx(t, k)
(1)

where x ∈ R
n, u ∈ R

p, and y ∈ R
q denote the system state, input,

and output, respectively. Matrices A, B, and C are system matrices
with appropriate dimensions. t denotes an arbitrary time instance
in an operation iteration, t = 0, 1, . . .,  N, where N is the length of the
operation iteration. For simplicity, t ∈ [0, N] is used in the following.
k = 0, 1, 2, . . . denote different iterations.

Because it is required that a given tracking task should be
repeated, the initial state needs to be reset at each iteration. The
following is a basic reset condition, which has been used in many
publications.

x(0, k) = x0, ∀k (2)

The reference trajectory is denoted by y(t, d), t ∈ [0, N]. With
regard to the reset condition, it is usually required that y(0,
d) = y0 � Cx0. The control purpose of ILC is to design a proper update
law for the input u(t, k), so that the corresponding output y(t, k) can
track y(t, d) as closely as possible. To this end, for any t in [0, N], we
define the tracking error as

e(t, k) = y(t, d) − y(t, k) (3)

Then the update law is a function of u(t, k) and e(t, k) to generate
u(t, k + 1), whose general form is as follows

u(t, k + 1) = h(u( · , k), . . .,  u( · , 0),  e( · , k), . . .,  e( · , 0)) (4)

When the above relationship depends only on the last iteration, it
is called a first-order ILC update law; otherwise, it is called a high-
order ILC update law. Generally, considering the simplicity of the
algorithm, most update laws are first-order laws, i.e.,

u(t, k + 1) = h(u( · , k), e( · , k)) (5)

Additionally, the update law is usually linear. The simplest update
law is as follows

u(t, k + 1) = u(t, k) + Ke(t  + 1, k) (6)

where K is the learning gain matrix, which is also the designed
parameter. In (6), u(t, k) is the input of the current iteration, while
Ke(t + 1, k) is the innovation term. The update law (6) is called a P-
type ILC update law. If the innovation term is replaced by K(e(t + 1,
k) − e(t, k)), the update law is a D-type one.

For system (1) and update law (6), a basic convergence result is
that K satisfies

‖I − CBK‖ < 1 (7)

Then, one has ‖e(t, k)‖ →
k→∞

0, where ‖· ‖ denotes the operator norm.

From this result, one can deduce that the design of K needs no
information regarding the system matrix A, but for the coupling
matrix CB.  This illustrates the advantage of ILC from the perspective
where ILC has little dependence on the system information. Thus,
ILC can handle tracking problems that have more uncertainties.

Remark 1. From the formulation of ILC, one can see that the model
takes the classic features of a 2D system. Many researchers have
made contributions from this point of view, and developed a 2D
system-based approach, which is one of the principal techniques
for ILC design and analysis.

Note that the operation length is limited by N, and is then
repeated multiple times. Thus, one could use the so-called lifting
technique, which implies lifting all of the inputs and outputs as
supervectors,

Uk = [uT (0,  k), uT (1,  k), . . .,  uT (N − 1, k)]
T

(8)

Yk = [yT (1,  k), uT (2,  k), . . .,  yT (N, k)]
T

(9)

Denote

G =

⎡⎢⎢⎢⎣
CB 0 0 · · · 0

CAB CB 0 · · · 0
...

...
...

. . .
...

CAN−1B CAN−2B · · · · · · CB

⎤⎥⎥⎥⎦ (10)

then one has

Yk = GUk + d (11)

where

d = [(Cx0)T , (CAx0)T , . . ., (CANx0)
T
]
T

(12)

Similar to (8) and (9), define

Yd = [yT (1,  d), uT (2,  d), . . .,  yT (N, d)]
T

Ek = (eT (1,  k), eT (2,  k), . . .,  eT (N, k))
T

then it leads to

Uk+1 = Uk + KEk (13)

where K = diag{K, K, . . .,  K}. By simple calculation, one has

Ek+1 = Yd − Yk+1 = Yd − GUk+1 − d = Yd − GUk − GKEk − d

= Ek − GKEk = (I − GK)Ek

Therefore, we obtain a condition that is sufficient to guarantee the
convergence of ILC (7). Actually, the lifting technique not only helps
us to obtain the convergence condition, but it also provides us with
an intrinsic understanding of ILC. In the lifted model (11), the evolu-
tionary process of an operation iteration has been integrated into G,
where the relationship between adjacent iterations is highlighted.
That is, the lifted model (11) is only along the k-axis, while the t-axis
has no more influence.

Remark 2. Note that the focus of ILC is how to improve the track-
ing performance iteratively along the iteration index, as one can
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