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a b s t r a c t

Gaussian Bayesian networks are graphical models that represent the dependence structure of a

multivariate normal random variable with a directed acyclic graph (DAG). In Gaussian Bayesian

networks the output is usually the conditional distribution of some unknown variables of interest given

a set of evidential nodes whose values are known. The problem of uncertainty about the assumption of

normality is very common in applications. Thus a sensitivity analysis of the non-normality effect in our

conclusions could be necessary. The aspect of non-normality to be considered is the tail behavior. In this

line, the multivariate exponential power distribution is a family depending on a kurtosis parameter that

goes from a leptokurtic to a platykurtic distribution with the normal as a mesokurtic distribution.

Therefore a more general model can be considered using the multivariate exponential power

distribution to describe the joint distribution of a Bayesian network, with a kurtosis parameter

reflecting deviations from the normal distribution. The sensitivity of the conclusions to this

perturbation is analyzed using the Kullback–Leibler divergence measure that provides an interesting

formula to evaluate the effect.

& 2008 Elsevier Ltd. All rights reserved.

1. Introduction

A Bayesian network (BN) represents a multivariate random
variable by means of directed acyclic graphs (DAG) [1,2]. This
representation, that describes the dependence structure of the
variables, has an intuitive interpretation even for complex models.
On the other hand, the quantitative part of the network is given by
the corresponding conditional distributions of each variable
conditioned by its parents in the graph. Both parts describing
the BN can also be used to efficiently make the calculations
required for inference about the variables considered. The most
important aspect is the evaluation of the effect that evidence
about some variables causes to the remainder variables; it is
known as evidence propagation. Some algorithms have been
implemented giving tools available for inference in BNs [1–4].
These facilities explain the extensive use of BNs in applications
[5–7]. In particular they have been found useful as a framework
for reliability analysis [8].

In Gaussian BNs (GBN), a joint multivariate normal distribu-
tion, Nðl;RÞ, is considered. This is usually because the condi-
tionals are also normal distributions and the evidence
propagation is obtained directly. However, in practice many
problems do not fit this joint model distribution. Thus, in a

generalization study, the multivariate exponential power (MEP)
distribution [9] could be used. Now, the conditionals are
elliptically distributed and the evidence propagation algorithm
does not seem to be as direct as the normal case.

Nevertheless, for a given GBN, a sensitivity analysis could
provide information about the effect of deviations from normality
in the tails. The output to be considered is, as usual in GBN, the
conditional distribution of some variables of interest given known
values of the evidential variables. Then, we study the difference
between the outputs when varying the kurtosis parameter of the
MEP family of distributions by means of the Kullback–Leibler (KL)
divergence measure [10].

The MEP is a family that extends the corresponding univariate
distribution [11]. It has been frequently used for robustness
studies because it depends on a kurtosis parameter, b, that goes
from zero to infinity, with b ¼ 1 for the normal distribution, b ¼ 1

2

for the Laplace distribution and b!1 converging to a uniform
distribution. The multivariate extension belongs to the large
family of elliptical distributions that includes the multivariate
normal. The elliptical continuous distributions are those whose
density functions are constant over ellipsoids; this fact explains
that many of the nice properties of normal distributions are
maintained.

The KL divergence is an asymmetric dissimilarity measure
between two probability distributions from an information-
theoretic basis. We use it to evaluate the difference between the
outputs for a joint distribution with b ¼ 1 and with some other
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b 2 ð0;1Þ. The usage of a divergence measure gives a full
comparison of the two distributions, not just in some character-
istics such as the mean or the variance. With this procedure, if a
multivariate normal distribution is used to handle the network
but there are some doubts about this model, the sensitivity
analysis for the BN reflects the influence of some model deviations
on the network output.

Sensitivity analysis in BNs is a developing area of work because
its significance in practical situations where the model assump-
tions are doubtful. Most of the analyses deal with discrete
networks [12,13] evaluating the perturbation in the parameters
that describe the network. In this respect some sensitivity
analyses are studied for GBNs [14] focusing on the effect on the
conditional distribution parameters after the evidence propaga-
tion. Some other paper [15] uses the KL divergence measure to
perform sensitivity analyses in GBNs for perturbations on the
parameters of the joint normal distribution of the GBN.

The paper is structured as follows. In Section 2 we set up
notation and terminology and review some of the results to be
used. In Section 3 our main result is stated and proved. Finally,
in Section 4 some relevant examples are analyzed with the
proposed methodology and in Section 5 some concluding remarks
are given.

2. Preliminaries

Let X ¼ ðX1; . . . ;XnÞ
T be a random variable with a mean vector l

and a n� n positive definite matrix R, the MEPðl;R;bÞ is a
member of the elliptically contoured family of distributions with a
general density function given by

hðxÞ / gððx� lÞTR�1
ðx� lÞÞ

for the particular case gðbÞðtÞ ¼ expf�tb=2g. Then the exact density
function is

f ðbÞðxÞ ¼
nG

n

2

� �
pn=2G 1þ

n

2b

� �
21þn=2b

jRj�1=2

� exp�
1

2
f½ðx� lÞTR�1

ðx� lÞ�bg. (1)

Figs. 1–3 show some particular cases for n ¼ 2,

l ¼
0

0

� �
and R ¼

1 0

0 1

� �
,

visualizing the different forms of the densities when the kurtosis
parameter b takes some special values which cause a significant
variation of the distributions ‘‘peakedness’’.

It can be shown that for a random variable X with a density
function (1), the mean vector and the covariance matrix are

E½X� ¼ l; cov½X� ¼
21=bG

nþ 2

2b

� �
nG

n

2b

� � R.

The main properties we will use are relative to the conditional
distributions but there are many other interesting results for these
distributions [9].

2.1. Conditional distributions

Let us consider the partition X ¼ ðX1; . . . ;Xp|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
I

;Xpþ1; . . . ;Xn|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
E

Þ
T

where I is the subset of variables of interest and E the evidential
variables.

The corresponding partition over the parameters is

l ¼
li

le

 !
; R ¼

Rii Rie

Rei Ree

 !
,

then, IjE ¼ xe is elliptically distributed with parameters

li:e ¼ li þRieR
�1
ee ðxe � leÞ,

Rii:e ¼ Rii � RieR
�1
ee Rei,

gðbÞi:e ðtÞ ¼ expf�1
2ðt þ qeÞ

b
g,

where qe ¼ ðxe � leÞ
TR�1

ee ðxe � leÞ is related to the squared
Mahalanobis distance from the evidence to its mean [9]. Then,
the functional parameter of the conditional distribution is the
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Fig. 1. Multivariate normal density function, b ¼ 1.
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Fig. 2. Multivariate double exponential density, b ¼ 1
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Fig. 3. The MEP density for b ¼ 6.

P. Main, H. Navarro / Reliability Engineering and System Safety 94 (2009) 922–926 923



https://isiarticles.com/article/28782

