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1. Introduction

Bayesian networks play an important role in decision making and statistical inference and have been applied in many
fields such as machine learning and bioinformatics. They offer powerful knowledge representations for independence,
conditional independence and causal relationships among variables in a given domain (Whittaker, 1990; Lauritzen, 1996;
Cowell et al., 1999; Pearl, 2000; Spirtes et al., 2000; Jensen and Nielsen, 2007).

Briefly, a Bayesian network is a directed graph with no directed cycles (i.e., a directed acyclic graph, denoted as DAG)
G = (V, E) with a probability distribution P. The vertices in G usually represent random variables X = (X,)cv, and P is
the joint probability distribution of X with P(x) = Hvev P(Xy|Xpa(vy), Where P(x,|Xpa(v)) is a conditional distribution and
pa(v) is the set of parents of v. The DAG is its qualitative component which represents dependence and independence
relationships. That is, the absence of some directed edges represents the existence of certain conditional independence
relationships among variables, and the presence of edges represents the existence of direct dependence relationships
or causal relationships. The joint probability distribution is its quantitative component that represents the strength of
association between variables.

For a Bayesian network G = (V, E) with a distribution P, if subsets A and B C V are d-separated by S in G (see the
corresponding definition in Section 2) then X, and X are conditionally independent given Xs with respect to P. In this
paper, we assume that all conditional independencies among variables implied in the true distribution can be indicated by
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Fig. 1. (a) DAG, (b) skeleton, and (c) moral graph (with gray lines being moral edges) of the Asia network.

d-separations of some DAGs, which is called the faithfulness assumption (Spirtes et al., 2000). Two DAGs over the same
variable set are said to be Markov equivalent if they represent the same conditional independencies among variables. An
equivalence class of Markov equivalent DAGs is represented by a partially directed DAG (PDAG) in which the directed edges
are common to every DAG, while the undirected edges may be oriented in one way in some DAGs and in another way in
other DAGs. Hence, the goal of structural learning is to construct a partially directed graph to represent the equivalence class
from an observed data set.

In this paper, we consider the problem of the learning structure of a Bayesian network. This problem has been widely
discussed by many authors (e.g. Cowell et al., 1999; Spirtes et al., 2000) and references therein). There are two major kinds
of algorithms for structural learning, namely constraint-based approaches (Spirtes and Glymour, 1991; Verma and Pearl,
1990; Xie et al., 2006; Xie and Geng, 2008; Ma et al., 2008; Liu et al., 2010) and search-and-score approaches (Chickering,
2002; Heckerman et al., 1995). We focus on the constraint-based approaches in this article.

For many constraint-based algorithms, two major steps are usually adopted to recover the DAG structure (Xie and Geng,
2008). First, they learn the moral graph of the target DAG by applying Markov boundary learning algorithms, where the
Markov boundary for a variable u is defined to be the set of variables composed of u’s parents, its children, and its children’s
other parents (Pearl, 1988). Second, they perform further independence tests for deleting the moral edges and orienting
edges on the basis of the moral graph learned in the first step. Therefore, as mentioned in (Xie and Geng, 2008), in a
constraint-based algorithm, searching for separators of pairs of variables is a major challenge for the orientation of edges and
for the structure recovery of a DAG. Here a separator is a subset of variables given which the variable pairs are conditionally
independent. Verma and Pearl (1990) proposed the inductive causation (IC) algorithm that searches for a separator from all
possible subsets of the vertex set. Spirtes and Glymour (1991) proposed the PC algorithm, which is a general systematic way
of searching for a separator in increasing order of cardinality within a constraint-based framework. However, searching for a
separator is limited to those vertices that are adjacent to the vertex pairs in the PC algorithm. Geng et al. (2005) decomposed
the moral graph into subgraphs (i.e., prime blocks), and then searched for a separator in all possible subsets in prime blocks.

In this paper, we present a more accurate characterization of moral edges in the moral graph. We show that a separator
corresponding to a putative moral edge can be obtained in the set of complete subsets contained in the neighbor set of
one vertex of the putative moral edge in some prime block. Using this result, we propose a structure-finder algorithm for
structural learning from the moral graph, which substantially improves on the IC algorithm and the decomposition approach
proposed by Geng et al. (2005). We also discuss how to construct moral graphs using marginal data locally. The rest of this
paper is organized as follows. In Section 2, we introduce notation and definitions. In Section 3, we give the characterizations
of moral edges, and present the structure-finder algorithm and a complexity analysis. Section 4 discusses how to construct
the moral graph locally from, separately, the Markov blanket, domain knowledge and d-separation trees. Simulation studies
are conducted to demonstrate the performance of our algorithm and existing algorithms in Section 5. We analyze a gene
expression data set in Section 6. Brief conclusions are drawn in Section 7. All proofs will be presented in the Appendix.

2. Notation and definitions

In this section, we provide some basic technical terminologies that are sufficient for understanding this article. For more
details, see Cowell et al. (1999) and Lauritzen (1996).

Let G = (V, E) be a directed graph without any directed cycles (DAG). A vertex ¢ € V (8 € V)is called a parent (child,
respectively) of 8 («) if the directed edge («, 8) € E. The set of all parents of « is denoted by pa(«). A path from « to
is a sequence [@¢ = g, o1, ..., a, = B] of distinct vertices such that («j_1, ;) € E or (o, @j—1) € Efori =1,...,n.If
there is a directed path from « to 8, we call @ (8) an ancestor (descendant, respectively) of 8 («). The set of ancestors of
is denoted by an(B). For any subset B C V, suppose that An(B) = [Upp an(b)] UB.

For a DAG G = (V, E), its skeleton G* = (V, E") is an undirected graph obtained by dropping the directions of the edges
in G. The moral graph G™ = (V, E™) of G is formed by connecting vertices that have a common child, and then making all
edges in the graph undirected. The fill-in edge («, B) is called a moral edge, that is, (¢, 8) & E*, and « and 8 have a common
child. A triple («, v, B) of distinct vertices is called a v-structure if (@, v) and (8, v) € E, but («, B) & E".

In a DAG G = (V,E), we call y a collider (non-collider) in a path 7 if arrows of 7 (do not, respectively) meet head to
head at y. A path 7 is said to be d-separated by S C V in G if it contains a vertex y € s such that either (i) y € Sand y is a
non-collider in r, or (ii) y & S and y does not have any descendants in S, and also y is a collider in 7. Two subsets A, B C V
are said to be d-separated by S, denoted by AuB|S[G], if every path from a vertex in A to a vertex in B is d-separated by S.
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