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a b s t r a c t

The concept class CN induced by a Bayesian network N can be embedded into some Euclid-
ean inner product space. The Vapnik–Chervonenkis (VC)-dimension of the concept class and
the minimum dimension of the inner product space are very important indicators for eval-
uating the classification capability of the Bayesian network. In this paper, we investigate
the properties of the concept class CN k induced by a multivalued Bayesian network N k ,
where each node Xi of N k is a k-valued variable. We focus on the values of two dimensions:
(i) the VC-dimension of the concept class CN k , denoted as VCdimðN kÞ, and (ii) the minimum
dimension of the inner product space into which CN k can be embedded. We show that the
values of these two dimensions are kn � 1 for fully connected k-valued Bayesian networks
N k

F with n variables. For non-fully connected k-valued Bayesian networks N k without V-
structure, we prove that the two dimensional values are ðk� 1Þ

Pn
i¼1kmi þ 1, where mi

denotes the number of parents for the ith variable. We also derive the upper and lower
bounds on the minimum dimension of the inner product space induced by non-fully con-
nected Bayesian networks.

� 2011 Elsevier Inc. All rights reserved.

1. Introduction

Bayesian networks (BNs), also referred to as Belief Networks or Causal Networks, are directed graphical models for rep-
resenting the probabilistic relationships between variables. The network structure is a directed acyclic graph (DAG) where
each node represents a random variable [18,8,16,10]. BNs are a powerful tool for modeling the decision-making process
under uncertainty. They have been successfully applied to various fields including machine learning and bioinformatics,
and found particularly useful in knowledge representation, reasoning and learning under uncertainty [12,9,5].

Kitakoshi et al. [14] presented a reinforcement learning system that adapts to environmental changes using a mixture of
BNs. Yang et al. [27] proposed a driver fatigue recognition model based on the information fusion technique and a dynamic
BN. BNs are also widely used for classification due to their simplicity and accuracy [4,7,11,17]. Some approaches combine
kernel methods and probabilistic models, such as Ben et al. [3], Taskar et al. [21], Gurwicz and Lerner [13], Chechik et al.
[6], Aritz et al. [2] and Theodoros and Mark [22]. Altun et al. [1] proposed a kernel for the Hidden Markov Model, which
is a special case of a BN. These methods study not only the domain-specific design of some probabilistic models, but also
the information extracted from the data during the training of the probabilistic models.

For a data mining algorithm, the generalization capability is a very important feature that is often used to evaluate the
performance of the algorithm. To improve the generalization of data mining algorithms, Wang and Dong [23] and Wang
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et al. [24] proposed a new refinement method based on a fuzzy decision tree, the rough set technique, and the fuzzy entropy.
Based on the analysis for multi-valued attribute and multi-labeled data, Yi et al. [28] presented a new decision tree classi-
fication algorithm. In fact, decision tree is a special type of graphical model. To improve the power of the nearest neighbor-
based algorithms to high dimensional data, a local learning method was proposed in the paper Tang et al. [20] for image
processing. As machine learning techniques become more widely adopted regarding the classification and the structure pre-
diction, it becomes increasingly important how to balance the computational consumption and the classification capability
[19]. For the evaluation of the classification capability induced by a BN without considering the training data and the clas-
sification algorithm, two important indexes are often considered, i.e. VC-dimension and the smallest dimension of the inner
product space (see Fig. 1). For example, to classify toys, a general procedure is to build a BN using the attributes of the toys or
an expert system, and then train the data and design an appropriate algorithm. In this paper, we focus on the classification
capability induced by a BN without considering the training data, the algorithm and the construction of the network graph.
We will discuss the two dimensional-values by multivalued BNs.

For a BN N , one can get a concept class CN induced by it. The concept class can be embedded into some Euclidean inner
product space. Therefore, there are two dimensional-values: the VC-dimension, denoted as VCdimðN Þ of the concept class CN ,
and the minimum dimension of the inner product space, denoted as EdimðN Þ, into which CN can be embedded, as shown in
Fig. 1. These are very important indexes to assess the classification capability of the BN. An interesting question has been
raised as to whether these two dimensional-values are equal for BNs.

A network graph is fully connected if there is a directed edge between any two nodes, as illustrated in Fig. 2. Let X, Z, Y be
three nodes of a network graph G ¼ ðV ; EÞ. We call (X,Z,Y) a V-structure if (1) G contains the edges X ? Z and Z Y, and (2) X
and Y are not adjacent in G [8]. For example, (X3,X5,X4) in Fig. 3(a), (X1,X3,X2) in Fig. 3(b) and (X1,X5,X4) in Fig. 3(c) are three V-
structures. The BNs shown in Fig. 4 do not have any V-structure.

Nakamura et al. [15] established the upper and lower bounds on the dimension EdimðN Þ of the inner product space for
two-valued BNs, where each node is a boolean variable.

Our earlier work in Yang and Wu [25] and Yang and Wu [26] was also focused on these two-valued BNs. For two-valued
fully connected Bayesian networks (FBNs) and almost-full Bayesian networks (AFBNs) with n variables, Yang and Wu [25]
showed that the VC dimension and the minimum dimension of the inner product space induced by them are 2n � 1, and
the two dimensional-values induced by a class of two-valued BNs without V-structures is

Pn
i¼12mi þ 1.

In this paper, we investigate the properties of the inner product space and concept classes induced by multivalued BNs
N k, where each node is a k-valued variable (Xi 2 {0,1,2, . . . ,k � 1}). Our work makes two major contributions to the field:
(i) for a k-valued FBN with n variables, we show that VCdimðN k

FÞ ¼ EdimðN k
FÞ ¼ k� 1n, and (ii) for k-valued BNs N k with-

out V-structure, we prove that VCdimðN kÞ ¼ EdimðN kÞ ¼ ðk� 1Þ
Pn

i¼1kmi þ 1, where mi denotes the number of parents for
the ith variable. We further derive the upper and lower bounds on the minimum dimension of the inner product space
for k-valued non-FBNs.

The results presented in this paper are partially based on our earlier work Yang and Wu [25] and Yang and Wu [26]. For
example, some results in Yang and Wu [25] are the special cases of the work in this paper. The rest of the paper is organized
as follows. In Section 2, we discuss related work and introduce our notations. In Section 3, we provide the VC dimension and
inner product space induced by FBNs. In Section 4, we provide a detailed proof of the upper and lower bounds on the dimension
of the inner product space for k-valued BNs. The VC-dimension and inner product space induced by BNs without V-structure
are given in Section 4. We conclude our work in Section 5.

2. Basic concepts and terms

A BN N consists of a DAG G ¼ ðV ; EÞ and some distributions P corresponding to G. A topological sort of the nodes (or vari-
ables) in a DAG G ¼ ðV ; EÞ is any total ordering of the nodes such that for any pair of nodes Xi and Xj in G, if Xi is an ancestor of
Xj, then Xi must precede Xj in the ordering. We assume that every edge (i, j) 2 E satisfies i < j, that is, E induces a topological
ordering on X1,X2, . . . ,Xn. Given (i, j) 2 E, Xi is called a parent of Xj and Xj is called a child of Xi. We use PAi to denote the set of
parents of node Xi and let mi = jPAij denote the number of parents. A network N is fully connected if and only if
PAi = {X1, . . . ,Xi�1} holds for every node Xi.

Fig. 1. The relationship is depicted among a BN N , the concept class CN , Euclidean inner product space and related parameters. By the probability
distribution on the BN, the data can be classified. That two dimension-values (VCdimðN Þ and EdimðN Þ) reflect the classification ability of BN.

156 Y. Yang, Y. Wu / Information Sciences 184 (2012) 155–165



https://isiarticles.com/article/29153

