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a b s t r a c t

We present a hybrid Bayesian network (HBN) framework to model the availability of renewable

systems. We use an approximate inference algorithm for HBNs that involves dynamically discretizing

the domain of all continuous variables and use this to obtain accurate approximations for the renewal

or repair time distributions for a system. We show how we can use HBNs to model corrective repair

time, logistics delay times and scheduled maintenance time distributions and combine these with time-

to-failure distributions to derive system availability. Example models are presented and are

accompanied by detailed descriptions of how repair (renewal) distributions might be modelled using

HBNs.

& 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Complex systems are required to be dependable in use and one
important aspect of a system’s dependability is availability.
Availability is intrinsically uncertain and is typically defined and
measured as the probability of the system being available for use
at a given point in time. A system might be unavailable if it has
failed and is awaiting repair or the system has failed and is
undergoing repair before re-entering service. Over a given time
period, a system might therefore be available or unavailable
depending not only on the system’s reliability but also on how
well the support organisation might affect the rate of repair and
the duration of such repairs (renewals). Additionally systems may
also undergo preventative maintenance usually on a scheduled
basis, and we might extend our analysis to consider the modes
of failure, the subsystem failure rates, maintenance regimes and
different methods of logistical support. Maintenance (renewal
time) and reliability (failure time) are stochastic variables and
it therefore makes sense to model these using appropriate
statistical inference techniques. We could then predict future
behaviour and make decisions about the acceptability of the
availability one might expect to experience in a given system. For
an overview of availability theory, concepts and models see
Stapelberg (2009).

We have used Bayesian networks (BNs) in a range of real-
world applications of system dependability assessment; see for
example Neil et al. (2001, 2003, 2008). In such applications, it is
inevitable that there will be a mixture of discrete and continuous
nodes (the resulting BNs are called hybrid (HBNs)). The traditional
approach to handling (non-Gaussian) continuous nodes is static:
you have to discretize the continuous domains using some pre-
defined range and intervals. However, this approach is unaccep-
table for critical systems, where there is a demand for reasonable
accuracy. To overcome this problem, we have developed a new
and powerful approximate algorithm for performing inference in
HBNs. We use a process of dynamic discretization of the domain
of all continuous variables in the HBN. The approach to
discretizing the domain is influenced by the work of Kozlov and
Koller (1997) using an entropy error as the basis for approxima-
tion. We differ from their approach by integrating an iterative
approximation scheme within existing BN software architectures,
such as in junction tree (JT) propagation (Jensen et al., 1990).
Thus, rather than support separate data structures and a new
propagation algorithm, we use the data structures commonly
used in JT algorithms.

The power and flexibility of the approach are demonstrated
here by applying it to estimate the availability of repairable
systems represented by a series of models each designed to model
distinct stages in the renewal process: logistics delays, repairs and
scheduled maintenance. Traditionally, modelling these events has
relied on Monte Carlo simulation, involving many repeated
simulation runs. In contrast to the simulation approach, we show
how our HBN algorithms can be used to represent repair and
support processes and the durations involved, under any
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assumptions for renewal time distributions (lognormal, exponen-
tial, etc.). The modelling has been made possible using the
commercial general-purpose Bayesian network software tool
AgenaRisk, Agena Ltd. (2010).

2. Bayesian networks

BNs have been widely used to represent full probability models
in a compact and intuitive way. In the BN framework, the
independence structure in a joint distribution is characterised by
a directed acyclic graph, with nodes representing random variables
(which can be discrete or continuous, and may or may not be
observable), and directed arcs representing causal or influential
relationship between variables (Pearl, 1993). The conditional
independence assertions about the variables, represented by the
lack of arcs, reduce significantly the complexity of inference and
allow the underlying joint probability distribution to be decom-
posed as a product of local conditional probability distributions
(CPDs) associated with each node and its respective parents. If the
variables are discrete, the CPDs can be represented as node
probability tables (NPTs), which list the probability that the child
node takes on each of its different values for each combination of
values of its parents. Since a BN encodes all relevant qualitative and
quantitative information contained in a full probability model, it is
an excellent tool for many types of probabilistic inference, where
we need to compute the posterior probability distribution of some
variables of interest (unknown parameters and unobserved data)
conditioned on some other variables that have been observed.

A range of robust and efficient propagation algorithms has
been developed for exact inference on Bayesian networks with
discrete variables (Pearl, 1988; Shenoy and Shafer, 1990; Jensen
et al., 1990). The common feature of these algorithms is that the
exact computation of posterior marginal distributions is per-
formed through a series of local computations over a secondary
structure, a tree of clusters, enabling calculation of the marginal
without computing the joint distribution. See also Huang and
Darwiche (1996).

The present generation of BN software tools attempt to model
continuous nodes by numerical approximations using static
discretization as implemented in a number of software tools
(e.g., Hugin, 2005; Netica, 2005). Although discretization allows
approximate inference in a hybrid BN without limitations on
relationships among continuous and discrete variables, current
software implementations require users to define a uniform
discretization of the states of any numeric node (whether it is
continuous or discrete) as a sequence of pre-defined intervals,
which remain static throughout all subsequent stages of Bayesian
inference regardless of any new conditioning evidence. The more
intervals you define, the more accuracy you can achieve, but at a
heavy cost of computational complexity. This is made worse by the
fact that you do not necessarily know in advance, where the
posterior marginal distribution will lie on the continuum for all
nodes and which ranges require the finer intervals. It follows that
where a model contains numerical nodes having a potentially large
range, results run the risk of being only crude approximations.

Alternatives to discretization have been suggested by Moral
et al. (2001) and Cobb and Shenoy (2006), who describe potential
approximations using mixtures of truncated exponential (MTE)
distributions, and by Murphy (1999) who uses variational
methods. There have also been some attempts for approximate
inference on hybrid BNs using Markov Chain Monte Carlo (MCMC)
approaches (Shacter and Peot, 1989). However, constructing
dependent samples that mixed well (i.e., that moves rapidly
throughout the support of the target posterior distribution)
remains a complex task.

3. Dynamic discretization

3.1. Inference and discretization

In this paper, inference is carried out using a standard BN
propagation algorithm (Lauritzen and Speigelhalter, 1988; Jensen
et al., 1990). Unfortunately, for hybrid BNs containing mixtures of
discrete and continuous nodes with non-Gaussian distributions,
exact inference becomes computationally intractable. The tradi-
tional approach to handling (non-Gaussian) continuous nodes is
static discretization. This requires the user to define a uniform
discretization of the domains of all continuous nodes, using some
pre-defined range and intervals. The discretization remains static
throughout all subsequent stages of exact inference performed on
the resulting discrete BN. The more intervals you define, the more
accuracy you can achieve, but at a heavy cost of computational
complexity. The level of accuracy of this approach is also
constrained by the feasibility of identifying the high-density
regions for each variable in the model, and this needs to be done
in advance of any inference taking place. This is cumbersome,
error prone and, where a model contains numerical nodes having
a potentially large range, results are necessarily only crude
approximations.

Let X be a continuous random node in the BN. The range of X is
denoted by OX, and the probability density function (PDF) of X,
with support OX, is denoted by fX. The idea of discretization is to
approximate fX as follows:

� partition OX into a set of intervals CX¼{wj}, and
� define a locally constant function ~f X on the partitioning

intervals.

Discretization operates in much the same way when X takes
integer values, but in this paper we will focus on the case where
X is continuous. As Kozlov and Koller (1997), we use an upper
bound of the Kullback–Leibler (KL) metric between two density
functions f and g:

Dðf JgÞ ¼

Z
S

f ðxÞ log
f ðxÞ

gðxÞ
dx

as an estimate of the relative entropy error induced by the
discretized function. Under the KL metric, the optimal value for
the discretized function ~f is given by the mean of the function f in
each of the intervals of the discretized domain. The main task
reduces then to finding an optimal discretization set CX¼{oj}.

Our approach to dynamic discretization searches OX for the most
accurate specification of the high-density regions given the model
and the evidence, calculating a sequence of discretization intervals
in OX iteratively. At each stage in the iterative process, a candidate
discretization, CX, is tested to determine whether the relative
entropy error of the resulting discretized probability density ~f X is
below a given threshold, defined according to the tradeoff between
the acceptable degree of precision and computation time.

By dynamically discretizing the model, we achieve more
accuracy in the regions that matter and incur less storage space
over static discretizations. Moreover we can adjust the discretiza-
tion any time in response to new evidence to achieve greater
accuracy. A detailed description of the dynamic discretization
algorithm is given in Neil et al. (2007). In an outline, dynamic
discretization follows these steps:

1. Convert the BN to a junction tree (JT) and choose an initial
discretization for all continuous variables.

2. Calculate the NPT of each node given the current
discretization.
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