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a b s t r a c t

Thanks to their inherent properties, probabilistic graphical models are one of the prime
candidates for machine learning and decision making tasks especially in uncertain
domains. Their capabilities, like representation, inference and learning, if used effectively,
can greatly help to build intelligent systems that are able to act accordingly in different
problem domains. Bayesian networks are one of the most widely used class of these mod-
els. Some of the inference and learning tasks in Bayesian networks involve complex opti-
mization problems that require the use of meta-heuristic algorithms. Evolutionary
algorithms, as successful problem solvers, are promising candidates for this purpose. This
paper reviews the application of evolutionary algorithms for solving some NP-hard optimi-
zation tasks in Bayesian network inference and learning.

� 2013 Elsevier Inc. All rights reserved.

1. Introduction

Probability theory has provided a sound basis for many of scientific and engineering tasks. Artificial intelligence, and
more specifically machine learning, is one of the fields that has exploited probability to develop new theorems and algo-
rithms. A popular class of probabilistic graphical models (PGMs), Bayesian networks, first introduced by Pearl [105], combine
graph and probability theories to obtain a more comprehensible representation of the joint probability distribution. This tool
can point out useful modularities in the underlying problem and help to accomplish the reasoning and decision making tasks
especially in uncertain domains. The application of these useful tools has been further improved by different methods pro-
posed for PGM inference [86] and automatic induction [23] from a set of samples.

Meanwhile, the difficult and complex problems existing in real-world applications have increased the demand for effec-
tive meta-heuristic algorithms that are able to achieve good (and not necessarily optimal) solutions by performing an intel-
ligent search of the space of possible solutions. Evolutionary computation is one of the most successful of these algorithms
that has achieved very good results across a wide range of problem domains. Applying their nature-inspired mechanisms,
e.g., survival of the fittest or genetic crossover and mutation, on a population of candidate solutions, evolutionary approaches
like genetic algorithms [59] have been able to perform a more effective and diverse search of the vast solution space of dif-
ficult problems.
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Some of the most relevant inference and learning problems in Bayesian networks are formulated as the optimization of a
function. These problems usually have an intractable complexity and therefore are a potential domain for the application of
meta-heuristic methods. The aim of this paper is to review how evolutionary algorithms have been applied for solving some
of the combinatorial problems existing in the inference and learning of Bayesian networks.

The paper is organized as follows. Section 2 introduces Bayesian networks and reviews some of the inference and learning
methods proposed for them. Section 3 presents the framework of evolutionary algorithms and discusses how they work. The
main review of how evolutionary algorithms are used in Bayesian network learning and inference is given in Section 4. Fi-
nally, Section 5 concludes the paper.

2. Bayesian networks

This section gives an introduction to Bayesian networks and how they are used for representing probability distributions
in discrete, continuous, and hybrid environments. It then briefly reviews some of the methods for inference and learning of
Bayesian networks. The terminology and concepts adopted and introduced in this section are later used in the presentation
of evolutionary algorithms for learning and inference in Bayesian networks. For more information on Bayesian networks and
PGMs in general, see Koller and Friedman [74], and Larrañaga and Moral [83].

2.1. Probability-related notations

Let X = (X1, . . ., Xn) be a vector of random variables and x = (x1, . . ., xn) a possible value combination for these variables. xi

denotes a possible value of Xi, the ith component of X, and y denotes a possible value combination for the sub-vector
Y ¼ ðXJ1 ; . . . ;XJk

Þ, J = {J1, . . ., Jk} # {1, . . ., n}.
If all variables in X are discrete, P(X = x) (or simply P(x)) is used to denote the joint probability mass of a specific config-

uration x for the variables. The conditional probability mass of a specific value xi of variable Xi given that Xj = xj is denoted by
P(Xi = xijXj = xj) (or simply P(xijxj)). Similarly, for continuous variables, the joint density function will be denoted as p(x) and the
conditional density function by p(xijxj). When the nature of variables in X = (X1, . . ., Xn) is irrelevant, q(x) = q(x1, . . ., xn) will be
used to represent the generalized joint probability. Let Y, Z and W be three disjoint sub-vectors of variables. Then, Y is said to
be conditionally independent of Z given W (denoted by I(Y, ZjW)), iff q(yjz, w) = q(yjw), for all y, z and w.

2.2. Bayesian network definition

A Bayesian network (BN) BðS;HÞ for a vector of variables X = (X1, . . ., Xn) consists of two components:

� A structure S represented by a directed acyclic graph (DAG), expressing a set of conditional independencies [30]
between variables.

� A set of local parameters H representing the conditional probability distributions for the values of each variable given
different value combinations of their parents, according to the structure S.

Fig. 1a shows an example of a BN structure for a problem with six variables. For each variable Xi, i = 1, . . ., n, structure S
represents the assertion that Xi and its non-descendants, NDðXiÞ, excluding its parents are conditionally independent given
its parents, Pai: i.e., IðXi;NDðXiÞ n PaijPaiÞ. This property is known as the Markov condition of BNs. Therefore, a BN encodes a
factorization for the joint probability distribution of the variables

qðxÞ ¼ qðx1; . . . ; xnÞ ¼
Yn

i¼1

qBðxijpaiÞ; ð1Þ

Fig. 1. An example of a Bayesian network structure and the parameters for one of its variables (X4) assuming that ri = i + 1.
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