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In recent years electronic tracking has provided voluminous data on vessel movements,

leading researchers to try various data mining techniques to find patterns and, especially,

deviations from patterns, i.e., for anomaly detection. Here we describe anomaly detection

with data mined Bayesian Networks, learning them from real world Automated Identifica-

tion System (AIS) data, and from supplementary data, producing both dynamic and static

Bayesian network models. We find that the learned networks are quite easy to examine and

verify despite incorporating a large number of variables. We also demonstrate that combin-

ing dynamic and static modelling approaches improves the coverage of the overall model

and thereby anomaly detection performance.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

A wealth of information on vessel movements has become available through the use of the Automated Identification

System (AIS), with much of it even filtering through to the public via the Internet. Surveillance authorities are interested in

using this data to uncover threats to security, illegal trafficking or other risks. Whereas previously surveillance has suffered

from a lack of data, electronic tracking has transformed the problem into one of overabundance, leading to a need for

automated analysis.

The main goal of vessel behaviour analysis is to identify anomalies. As noted by Riveiro and Falkman [1], anomalies

are detected either by using signature-based approaches or, as we do here, by developing a model representing normal

behaviour, with anomalous behaviour being then identified by the extent of a vessel’s deviation from normality. A common

approach to creating normal models is to cluster the data around a set of points in a multi-dimensional feature space,

with features such as longitude and latitude, speed and course [2]. Tracks that are within or near one of these clusters

are considered normal, while the remainder are flagged as potential anomalies. Researchers use many different machine

learning techniques to generate normality models from vessel movement data (typically AIS data), including the learning

of Gaussian mixture models [2], support vector machines [3] and neural networks [4]. A disadvantage of these approaches

is that they do not provide a transparent model that a human user, such as a surveillance officer, can understand, interact

with and explore.

Here, we explore the use of Bayesian Networks (BNs) [5,6] for analysing vessel behaviour and detecting anomalies.While

BNs have been widely applied for surveillance and anomaly detection (e.g., [7–10]), to date there have been only a few

preliminary applications of BNs to maritime anomaly detection. As noted by Johansson and Falkman [11], however, BNs

potentially have two substantial advantages in this domain over other types of models: (1) BNmodels are easily understood

by people who are not BN specialists (whichmay include surveillance operators or other domain experts) and (2) they allow
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for the straightforward incorporation of expert knowledge. They can also represent causal relations directly and, in that case,

have the advantage of being more easily verified and validated, as we show in Section 3. We begin with a brief look at some

of earlier approaches to anomaly detection.

1.1. Other approaches to anomaly detection

Support Vector Machines (SVMs) partition the multidimensional feature space, producing strict boundaries between

clusters. In their simplest forms, SVMs suffer from a number of problems that have limited their use in vessel anomaly

detection, includinga lackofpartial assignment, a restriction tobinaryclasses, highcomputational complexityanddifficulties

in summarizing and communicating the learned models. Li et al. [3], however, make use of SVMs to perform an interesting

analysis of vessel behaviour at a higher level of abstraction than that of the time series. Li et al. extract higher levelmovement

features from the track (such as turning left or looping) and then cluster these further intowhat they call “movementmotifs”.

They show that an SVM trained on the movement motif abstractions can correctly classify a significantly higher percentage

of their test data in some cases than an SVM trained on lower level features alone.

One commonly used model is the neural network [4,12], which consists of a network of processing nodes, input/output

connections between nodes and weights attached to the connections. For anomaly detection neural networks are typically

used to map an input vector of reals to an output in the form of a classification. When used in this way, a neural network

partitions the feature space much like an SVM. Unfortunately, data mined neural networks of any moderate degree of

complexity are almost completely opaque to human understanding, whereas their interpretation by surveillance operators

is one of their primary purposes [13].

GaussianMixtureModels (GMMs)haveprovenapopular choice for representingnormalitymodelsofvesselbehaviour [14,

2,15]. As its name implies, a GMM is a combination of multi-variate Gaussian distributions. These distributions aim to

summarize how the training data cluster and spread in the multi-dimensional space. Kernel Density Estimators (KDEs) are

a generalisation of GMMs, using a sum of (typically Gaussian) distributions for each point, they allow for more flexibility

than GMMs in the way clusters are described. Unfortunately, both GMM and KDE models can be difficult for non-experts to

understand. Laxhammar et al. [15] trained both GMMs and KDEs on AIS data and evaluated anomaly detection performance

by stochastically generating anomalous tracks, and thenmeasuring howmany steps it took for eachmethod to flag the track

as anomalous.They found little extra value in using KDE methods over GMMs.

Das and Schneider [16,17] identify anomalous cases by finding unexpected dependencies between sets of attributes. They

compare their approach to one using BNs and find their approach does better. We are skeptical inasmuch as their approach

could very readily be adoptedusingBayesiannetworks,whileBayesiannetworkmodels also allow the identificationof a large

further class of anomalies not reflected simply by direct dependencies, for example, those represented only by conditional

dependencies, which Das and his collaborators ignore.

1.2. BN-based approaches to anomaly detection

Given that anomalies just are events that are highly improbable under ordinary circumstances, Bayesian networks are a

natural representation for reasoning about them. In particular, using a BN we can easily calculate:

P(e|m) (1)

where e is an event (or evidence for an event) and m is the model. However, there is no generally accepted method of

classifying an event as anomalous using a BN. Often (e.g., [8,11]), the probability above is tested against a threshold t:

P(e|m) < t → anomalous (2)

Or, if there is a sequence of events—as there is when trying to detect anomalous behaviour—these probabilities may be

aggregated over time, as in:

1

N

∑

i

P(ei|m) < t → anomalous (3)

with N timesteps i. We can choose N either to range over the course of the entire behaviour (i.e., event sequence) or to

restrict it to specific time windows.

An alternative approach to identifying anomalies is to check for conflicts within a set of evidence. This is similar to the

approach that Das and Schneider [16] take, but within the context of BN inference. Jensen et al. [18] proposed a “conflict

measure” to detect possible incoherence in evidence E = {E1 = e1, . . . , Em = em}:

C(E) = log
P(E1 = e1) × . . . × P(Em = em)

P(E)
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