
Using situation calculus for e-business agents

Conan C. Albrecht, Douglas D. Dean, James V. Hansen*

Marriott School of Management, Brigham Young University, Provo, UT 84602, USA

Abstract

As the Internet grows, it is becoming less feasible for customers and merchants to manually visit each web site, analyze the information

there, and make sound business decisions regarding the trading of goods or services. To cope with this evolution, software agents can be

designed that are capable of automating the more routine, tedious, and time-consuming tasks involved in current trading processes. At a

higher level agents may also be able to negotiate and make autonomous decisions and commitments on behalf of their owners.

This paper describes an agent implementation using the situation calculus, which offers a possibly unifying paradigm for dynamic agents.

Interesting applications are currently being developed. Our contribution is a situation calculus agent system developed for e-business.

Ongoing work is focused on implementing this system in an open marketplace environment.

q 2003 Elsevier Science Ltd. All rights reserved.

Keywords: Internet; E-business; Software agent

1. Introduction

The Internet can be viewed as a large, distributed

information resource, with connecting systems that are

designed and implemented by many different organizations

with various goals and agendas. Because of the breadth and

flexibility of the Internet, e-business applications have

grown rapidly in recent years, and this trend is expected to

continue. Forrester Research and the Gartner Group

estimate that e-business transactions will exceed $7 trillion

by 2004. Thirty-seven percent of these transactions are

estimated to be associated with electronic marketplaces,

which provide resources to facilitate the interaction and

exchange of commerce transactions among buyers, sellers,

and other trading partners (Rahman & Bignall, 2001).

Today’s e-business is increasingly characterized by the

ability to create value through the gathering, synthesizing,

and distribution of information. E-businesses progressively

compete in real time rather than cycle time and operate

through a constantly responsive dialogue with their

customers and markets. Relationships among customers

and markets are managed by technology through electronic

channels. These technology-mediated channels are charac-

terized by ongoing operations, which are subjected to

measurement and tracking in new and innovative ways

(Evans & Wurster, 2000).

Such applications are being facilitated by e-business

architectures that provide opportunity for distributed,

service-based applications, where service providers may

not know about each other at design time. Services include

such components as credit card charging, final fulfillment of

orders, or publication of product information. These services

are often distributed and run on different computers in

geographically dispersed locations. Generally, services are

created and offered by separate businesses, which specialize

in a particular type of service. Such entities can often

achieve economies of scale and provide levels of service

beyond what a firm may be able to provide internally.

This environment offers new opportunities for online

business advantage.

Yet as the Internet grows in size and sophistication, it is

becoming less feasible for customers and merchants to

manually visit each web site, analyze the information there,

and make sound business decisions regarding the trading of

goods or services. It is inevitable that buyers may miss

finding the best product or services in the vast milieu of

information. In this new world, software agent technologies

offer a robust paradigm for trading on the Internet and

foreshadow a dramatically changed approach to conduct

analysis, market research, and similar e-business functions.

At one level, software agents can be designed to be capable

of automating the more routine, tedious, and time-consum-

ing tasks involved in current trading processes. At a higher

level, agents can be designed to negotiate and make

0957-4174/03/$ - see front matter q 2003 Elsevier Science Ltd. All rights reserved.

doi:10.1016/S0957-4174(02)00188-4

Expert Systems with Applications 24 (2003) 391–397

www.elsevier.com/locate/eswa

* Corresponding author. Tel.: þ1-801-422-2308; fax: þ1-801-422-5933.

E-mail address: james_hansen@byu.edu (J.V. Hansen).

http://www.elsevier.com/locate/eswa

autonomous decisions and commitments on behalf of their

owners (Sandholm, 2001).

2. Agents and e-business

Implementation of a conventional strongly coupled

system for electronic data interchange (EDI) between

trading partners requires that a business know the providers

and consumers of the various goods and services being

traded so that transactions can be exercised between

appropriate parties. In today’s more open markets, deter-

mining this information in advance is extremely difficult or

even impossible. Consider an electronic system to support

open trading, where orders are made available to any

qualified bidder. Requiring the system designer to determine

the sender and recipient of each transaction in advance is not

realistic. On the contrary, open trading applications are only

loosely coupled, since not all of the necessary information is

available when the system is designed.

Agents, however, can naturally support such appli-

cations. Instead of specifying the individual entities to be

interconnected and their interfaces with one another, an

agent-based system need identify only the classes of entities

in the system and their impact on the environment.

Because the agent is designed to interact with the

environment rather than with specific other agents, it can

interact appropriately with any other agent that modifies the

environment within the range of variation with which other

agents are designed to handle (Wooldridge, 2002).

Following Lesperance, Levesque, & Reiter (1999), we

take an agent to be any active entity whose behavior

is usefully described through mental notions such as

knowledge, goals, abilities, commitments, and the like.

At a low level, agents are currently being used to help

suppliers reduce inventory carrying costs and marketing

costs by offering special discounts unavailable to the general

public. At a higher level agents are being programmed with

rules or learning capability that have led to their being

termed ‘intelligent’ agents.

Intelligent agents are being used to help businesses

determine which customers are most likely to be interested

in purchasing the discounted items, to compare product and

service information, to help users narrow the number of sites

that contain desired information, and negotiating business

transactions: prices, delivery schedules, quality, warrantees,

etc. Firms are also using intelligent agent technology to

continuously conduct environment scans. For example, an

attorney that specializes in patent law can use pull

technology to continuously monitor multiple sites and

signal any developments such as new patent-related court

cases or court decisions. (Greenstein & Vasarhelyi, 2002)

Central to successful agent implementation is the issue of

how to program agents to perform their functions. In one

sense, agent programming can be viewed as a generalization

of object-oriented programming; yet the notion of an agent

is more complex than that of an object. Hence, it is

important that tools for modeling and designing agents be

based on sound theoretical foundations. Many of today’s

agent paradigms are ad hoc or otherwise difficult to evaluate

(Reiter, 2001).

Although several powerful formalisms exist, finding the

right formalism is a nontrivial challenge, as it must provide

a level of expressiveness that serves the practical problems

at hand in a tractable way (Lesperance, Levesque, Lin, &

Scherl, 2000). Despite the range of choices, there is general

agreement that formal methods do help in the long run in

helping to develop a clearer understanding of problems and

solutions (Kraus, 2001).

This paper describes an approach and application

grounded in theoretical and practical developments arising

from recent research in cognitive robots and software

agents. In particular the development of extensions to

situation calculus opens new possibilities for agent

programming (Boutelier, Reiter, Soutchanski, & Thrun,

2000).

Situation calculus allows any defined set of complex

action expressions to be viewed as the programming

language for agents. That language can then be used to

model the behavior of a set of agents and to actually

implement them (Reiter, 2001).

Relevant research in artificial intelligence aims at

explaining and modeling intelligent behavior in terms of

computational processes. The classical approach assumes

intelligent behavior to be a result of correct reasoning on

correct representations. In turn, reasoning is understood

by means of formal logic. In research areas such as

cognitive robotics and software agents, this approach to

AI is applied to a crucial aspect of intelligent behavior,

that of acting in a dynamic world. Situation calculus

addresses this issue formally and directly (Lesperance

et al., 2000).

3. High-level agent programming using
situation calculus

The construction of autonomous agents is paramount in

artificial intelligence, with considerable research devoted to

methods that will ease the burden of designing controllers

for such agents. There are two principal ways in which the

complexity of devising controllers can be constructed.

The first is to provide languages, with which a programmer

can specify a control program with relative ease, using

high-level actions as primitives, and expressing the

necessary operations in a natural way. The second is to

simply specify goals and provide the agent with the ability

to plan appropriate courses of action that achieve those

goals. In this way the need for explicit programming is

avoided (Wooldridge, 2002).

The development of this type of computational agent has

been the subject of considerable recent work. The core

C. C. Albrecht et al. / Expert Systems with Applications 24 (2003) 391–397392

https://isiarticles.com/article/3668

