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1. Introduction

The relationship between the long-term dynamics and the
patterns observed in population dynamics and in particular in
prey–predator spatial models has been a matter of extensive
research in theoretical ecology: reaction diffusion equations,
cellular automata, patch models, coupled map lattices and
individual based models are only a subset of the tools used to
analyse phenomena such as phase transitions (Antal and Michel,
2000; Bagnoli et al., 2001), scaling and finite size effects (Suther-
land and Jacobs, 1994; Pascual and Levin, 1999; Pascual et al.,
2002; Xu et al., 2005), oscillatory behavior (Blasius et al., 1999;
Lipowski, 1999; Zhang et al., 2006), chaos (Jansen, 2001; Li et al.,
2005; Maionchi et al., 2006; Gibson and Wilson, 2013) and noise
induced effects (Fiasconaro et al., 2004; La Cognata et al., 2010).
Given the nature of ecological models, most of these phenomena
are closely related.

The dispersal of individuals is one of the central mechanisms
behind pattern formation in spatially explicit models (Hosseini,
2006; Filotas et al., 2008). A good approach to model such
phenomenon is to use transition rules that describe a diffusion
process: in Comins et al. (1992), the authors study a host-
parasitoid model on a rectangular grid of patches. The effects of the
diffusion on the spatial dynamics of the model manifest as a
wavefront of hosts traveling at constant speed; this event is
followed by a front of parasitoids that consumes the original wave
of hosts. Depending on the fraction of hosts that disperse each
generation several spatial patterns might be observed including
spatial chaos, spirals and ‘‘crystal’’ patterns. The authors note that
despite the fact that the presence of any of these patterns leads to
the coexistence of both species, there is a threshold for the size of
the grid below which extinction is always observed.

A comparative study of the effects of diffusion processes in
spatial models appears in Sherrat et al. (1997). The authors analyse
the behavior of four different spatial prey–predator models
(reaction–diffusion equations, coupled map lattices, cellular
automata and integrodifference equations) where prey suffer
the invasion of predators. Simulations of one-dimensional versions
of each model show the expected wave front of predators invading
the prey-only state and leaving behind a coexistence state. The
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A B S T R A C T

A lattice prey–predator model is studied. Transition rules applied sequentially describe processes such as

reproduction, predation, and death of predators. The movement of predators is governed by a local

particle swarm optimization algorithm, which causes the formation of swarms of predators that

propagate through the lattice. Starting with a single predator in a lattice fully covered by preys, we

observe a wavefront of predators invading the zones dominated by preys; subsequent fronts arise during

the transient phase, where a monotonic approach to a fixed point is present. After the transient phase the

system enters an oscillatory regime, where the amplitude of oscillations appears to be bounded but is

difficult to predict. We observe qualitative similar behavior even for larger lattices. An empirical

approach is used to determine the effects of the movement of predators on the temporal dynamics of the

system. Our results show that the algorithm used to model the movement of predators increases the

proficiency of predators.
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authors focus their attention on the spatial dynamics behind the
initial wavefront of predators where three different phenomena
are observed:

� Regular spatio-temporal oscillations. For this case, periodic
travelling waves moving at a different speed than the
original front are observed. Such waves correspond to a family
of solutions for the model based on reaction diffusion equations.
� Irregular spatio-temporal oscillations. For the reaction diffusion

equations, certain parameters might force the travelling wave
solution into irregular oscillations, the authors note that such
pattern might be associated with spatial chaos. Irregularities
expand from the focus of the invasion suggesting again that such
dynamics are chaotic.
� Irregular fluctuations. Here, there is a band of periodic waves

immediately behind the invasive front. Following this band there
are irregular oscillations with no apparent pattern. This behavior
corresponds to a transient phase due to an unstable periodic
wave solution.

Similar patterns were obtained in Arashiro and Tomé (2007) for
a probabilistic cellular automaton. By carrying numerical simula-
tions, the authors were able to obtain the critical exponents for the
automaton, thus allowing the classification of the model into the
directed percolation universality class.

Diffusion-like transition rules offer a simple and mathemati-
cally tractable way to describe the dispersal of individuals. In
Filotas et al. (2008) the authors state that because of a lack of
common rules behind the dispersal of species, ecologists often
have to make the simplest assumptions (e.g., a density
independent rate of dispersion) when modeling such phenome-
non; even if for many species factors such as the local population
size, resource availability, or habitat quality influence the
mobility of individuals. However, there has been efforts to
develop strategies that better mimic the phenomena found in
natural ecosystems (Li et al., 2005; Boccara et al., 1994;
Rozenfeld and Albano, 2001; Szwabiński, 2012; Wang et al.,
2012). In these approaches, cooperation is neglected in favour of
intraspecific competition, i.e., only the negative effects of the
aggregation of individuals are considered. However, it is
reasonable to expect that under certain circumstances, a group
of individuals has better chances of survival than those that
remain isolated, e.g., to flee from a predator, or to hunt for prey.
Allee effects are a good example where aggregation leads to
positive density dependence, albeit only for small populations;
however recent works have shown that such effects are key for
the stability of a prey–predator system (Wang et al., 2011), or
even determine the success of an invading species (Mistro et al.,
2012). In some animal communities, social behavior is also the
source of many extraordinary patterns, e.g., bird flocking or
insect swarms. By incorporating social behavior on the dispersal
rules of predators, we attempt to study the effects that such
process have on the global dynamics of an ecosystem.

In the present paper we analyse a prey–predator lattice model
where a local Particle Swarm Optimization (PSO) algorithm is used
to model social interactions among the individuals of the predators
species. PSO is an evolutionary computation algorithm typically
used to find an optimal solution in a search space that defines the
set of possible solutions to a particular problem. The foundations of
the algorithm come from the observation of the social behavior of
animal communities previously mentioned: insect swarms, bird
flocks or fish schools (Trelea, 2003). In a PSO algorithm there is a
population of particles called the ‘‘swarm’’, the position of each
particle determines a candidate solution to the problem under
study. Typically, social interactions among the members of the
swarm occurs through one of two information sharing schemes:

� Global. A particle moves according to its own knowledge of the
search space, and the information it receives from the particle at
the location that represents the best solution found by the
swarm.
� Local. In this scheme, a neighborhood comprising a particle and

some of its nearest neighbors is created. To move, a particle uses
its own knowledge of the search space and the information
provided by the particle with the ‘‘best’’ position among its
neighbors.

In our model, these interactions help a predator to determine
the best direction of movement in order to secure food for its
survival and reproduction. Cooperation among predators manifest
itself as an interesting spatial pattern: predators group into
clusters that maintain cohesion as they move through the lattice
hunting for preys; the analysis of such phenomenon is the main
focus of the present article. In a previous work (see Martı́nez
Molina et al., 2013) we showed that the population dynamics
corresponding to the formation and propagation of clusters of
predators is characterized by oscillations with a very regular
period. Similar behavior has been associated with variations in the
mobility of the individuals of a species (Boccara et al., 1994;
Shigefumi et al., 2014), large migration rates in patch models
(Blasius et al., 1999; Li et al., 2005), or the aggregation of
populations at small or intermediate scales (Pascual and Levin,
1999; Pascual et al., 2001; Durrett, 1994; Mobilia et al., 2007). In
light of these results, we investigate the relationship between the
social behavior of predators and the observed population
dynamics. The main result of this work is that cooperation through
a local PSO increases the proficiency of predators, which behavior
is characterized by a transient phase followed by an oscillatory
regime. Such behavior was taken into account to build a mean field
model that accurately predicts the mean densities of the
populations.

The proposed model is defined in Section 2; here, we describe
each stage of the model, and explain the main consequence of
the use of a local PSO algorithm for the movement of predators, i.e.,
the grouping of predators into swarms. In Section 3 we analyse the
invasion of prey dominated zones by predators using initial
conditions close to the absorbing state where the lattice is full of
preys. In Section 4 we show that the movement of predators
reduces the death probability of predators, which in turn increases
the death rate of preys. Finally, in Section 5 we explore some
properties of the model for different sizes of the lattice. Our
conclusions appear in Section 7.

2. Proposed model

Our model describes the interactions between a sessile prey
and its predator, such interactions are local in nature and occur on
a two-dimensional lattice L where periodic boundaries have been
implemented. Each site of the lattice may be occupied by a prey, a
predator, both or be empty. Time proceeds in discrete time steps.
The evolution of the model is controlled by a life cycle, known as
‘‘season’’, that determines the transition function that is applied at
each time step. Depending on the function being applied, preys
and predators may interact within a neighborhood whose size
(the number of sites within the neighborhood) is defined as
follows:

jMrj ¼ ð2r þ 1Þ2 (1)

where r is the radius of the neighborhood. Thus an
M1 neighborhood comprises the eight nearest neighbors of a
particular site, and the site itself; an M2 neighborhood the nearest
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