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a b s t r a c t

Feedforward neural networks with random weights (FNNRWs), as random basis function

approximators, have received considerable attention due to their potential applications in

dealing with large scale datasets. Special characteristics of such a learner model come from

weights specification, that is, the input weights and biases are randomly assigned and the

output weights can be analytically evaluated by a Moore–Penrose generalized inverse of the

hidden output matrix. When the size of data samples becomes very large, such a learning

scheme is infeasible for problem solving. This paper aims to develop an iterative solution for

training FNNRWs with large scale datasets, where a regularization model is employed to po-

tentially produce a learner model with improved generalization capability. Theoretical results

on the convergence and stability of the proposed learning algorithm are established. Experi-

ments on some UCI benchmark datasets and a face recognition dataset are carried out, and the

results and comparisons indicate the applicability and effectiveness of our proposed learning

algorithm for dealing with large scale datasets.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Feedforward neural networks with random weights (FNNRWs) were proposed by Schmidt and his co-workers in [21], which

can be mathematically described by

GN(x) =
L∑

i=1

βig(〈ωi, x〉 + bi), (1.1)

where x = [x1, x2, . . . , xd]ᵀ ∈ Rd, g is an activation function, bi is a bias, ωi = [ωi1,ωi2, . . . , ωid] ∈ Rd and β i ∈ R are the input and

output weights, respectively; 〈ωi, x〉 = ∑d
j=1 ωi jx j denotes the Euclidean inner product.

The input weights and biases are assigned randomly with uniform distribution in [−1, 1], and the output weights can be de-

termined analytically by using the well-known least mean squares method [21]. Unfortunately, such a randomized learner model
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in [21] was not proposed as a working algorithm, but simply as a tool to investigate some characteristics of feedforward neural

networks. From approximation theory, it is obvious that such a way to randomly assign the input weights and biases cannot

guarantee the universal approximation capability (in the sense of probability one) of the resulting random learner models. This

disability can be verified by many counter examples. Thus, statements on its approximation capability and good generalization

in the literature are all misleading and lack scientific justification. A similar randomized learner model, termed as random vector

functional-link nets (RVFLs), and associated algorithms were proposed by Pao and Takefuji in [15], where a direct link from the

input layer to the output layer is added. In [13], a theoretical justification of the universal approximation capability of RVFLs

(without direct link case) was established, where the scope of randomly assigned input weights and biases are data dependent

and specified in a constructive manner. Therefore, a careful estimation of the parameters characterizing the scope in algorithm

implementation should be done for each dataset in practice.

Due to some good learning characteristics [16], this type of randomized training scheme for feedforward neural networks has

been widely applied in data modeling [9]. Obviously, the most appealing property of randomized techniques for feedforward

neural networks lies in the possibility of handling large scale datasets with real-time requirement. Recently, some advanced

randomized learning algorithms have been developed in [1,5–7,20]. Also, some theoretical results on the approximation power

of randomized learners were investigated in [11,18,19]. It has been recognized that the way the output weights are computed

can result in memory problems for desktop computers as the size of data samples and the number of nodes at the hidden

layer of neural networks become very large. Motivated by this crucial drawback and potential applications of such a machine

learning technique for big data, we aim to overcome the difficulty of computing the generalized inverse in least mean squares

method, and present a feasible solution for the large scale datasets. This work is built on a framework for resolving the linear

inverse problems in [8]. Note that our objective in this study is not to investigate properties of the randomized learner model

from statistical learning theory, but an iterative scheme for building an instance learner model. It has been recognized that

some machine learning techniques, such as ensemble learning [1] and sequential learning [14,17], are related to large scale data

modeling problems, however, our focus in this work is neither on sampling-based ensemble techniques nor streaming data

modeling.

The remainder of this paper is organized as follows. Section 2 provides some supportive results for algorithm development.

Section 3 proposes an iterative learning algorithm with analyses of its convergence and stability. The performance evaluation

is presented in Section 4, where the experimental results on some benchmark datasets and a face recognition dataset are re-

ported. Section 5 concludes this paper with some remarks. Finally, mathematical proofs of the theoretical results are given in the

Appendix.

2. Supportive results

Given a set of training samples T = {(xi, ti) : i = 1, 2, . . . , N}, let ωi and bi be chosen randomly from the uniform distribution

and fixed in advance. Then, the output weights can be obtained by solving the following linear equation system:

Hβ = T, (2.1)

where β = [β1, β2, . . . , βL]ᵀ, T = [t1, t2, . . . , tN]ᵀ,

H =

⎡
⎣ g(〈ω1, x1〉 + b1) . . . g(〈ωL, x1〉 + bL)

... . . .
...

g(〈ω1, xN〉 + b1) . . . g(〈ωL, xN〉 + bL)

⎤
⎦. (2.2)

A least mean squares solution of (2.1) can be expressed by β = H†T, where H† is the Moore–Penrose generalized inverse of H.

However, the least squares problem is usually ill-posed and one can employ a regularization model to find a solution, that is,

Lμ(β) = ‖Hβ − T‖2
2 + μJ(β), (2.3)

where μ is a small positive number called the regularizing factor, and J is a differentiable, strictly convex and coercive function

with respect to β . In this case, the minimization of (2.3) has a unique solution. Particularly, if we take J(β) = ‖β‖2
2
, then the

regularization model becomes

�μ(β) = ‖Hβ − T‖2
2 + μ‖β‖2

2. (2.4)

If μ is given such that (HᵀH + μI) is invertible, then the minimizer of (2.4) can be written as

β� = (HᵀH + μI)−1HᵀT, (2.5)

where I denotes the identity matrix.

The regularizing factor is fixed beforehand, and should be taken properly so that HᵀH + μI continues to be invertible for all

random assignments. Furthermore, the computation of the inverse matrix in (2.5) will become very difficult and impractical for

large scale datasets. In such a background, it is necessary to develop more effective schemes for problem solving. Based on the

iterative method proposed in [8] which is further explored in [22], we first establish the following supportive result (its proof is

detailed in the Appendix).
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