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a b s t r a c t

Often, actuaries replace a group of heterogeneous life insurance contracts (different age at policy issue,
contract duration, sum insured, etc.) with a representative one in order to speed the computations. The
present paper aims to homogenize a group of policies by controlling the impact on Tail-VaR and related
risk measures.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction and motivation

Life insurance models are becoming more and more sophisti-
cated under Solvency 2 regulation. European insurance companies
are required to base their cash-flow projection on a policy-by-
policy approach on the one hand, and to demonstrate the com-
pliance of their internal model by carrying out additional testing
on the other hand (see EIOPA, 2010). In particular, one of the val-
idation tools recommended by the regulator is sensitivity testing,
which consists in estimating the impact on the model outcomes of
various changes in the underlying risk factors. Next to the baseline
runs, insurers are then invited to conduct sensitivity analyses. Usu-
ally, all those studies need to be performed within tight deadlines.
However, the use ofMonte-Carlo simulations based on a policy-by-
policy approach often leads to large running times (up to several
days for the entire portfolio with the currently available comput-
ing power). Saving time when running the models thus appears to
be an issue of major importance in life insurance.

A way to address this problem is to rely on grouping methods.
Under certain conditions, the regulator permits the projection of
future cash-flows based on suitable model points. We refer the
reader to EIOPA (2010) for extensive details. The basic idea is
to aggregate policies into homogeneous groups and to replace
the group of contracts with a representative insurance policy in
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order to speed the simulation process. In this paper, we aim to
homogenize a group of policies by controlling the impact on Tail-
Value-at-Risk (Tail-VaR).

Related problems have already been considered in the actuarial
literature. For instance, Frostig (2001) compared a heterogeneous
portfolio composed of individual risks that are independent but
not identically distributed with two homogeneous portfolios in
which the risks are independent and identically distributed. The
first homogeneous portfolio considered by Frostig (2001) is made
of risks that are mixtures with equal weights of the risks in the
heterogeneous portfolio and leads to an upper bound for the Tail-
VaRof theheterogeneous portfolio. The secondone consists of risks
that are the average of the risks in the heterogeneous portfolio and
turns out to be a lower bound.

Here, we use a simpler approach to obtain the upper bound
derived in Frostig (2001) using a general comparison result
obtained by Denuit and Müller (2002). Also, relying on this upper
bound, we show how to build conservative model points with
respect to Tail-VaR in a life insurance context. Finally, we improve
the lower bound obtained in Frostig (2001) and we discuss various
approximations.

The remainder of this paper is organized as follows. Section 2
recalls useful definitions and makes the problem under investiga-
tion more formal in terms of stochastic dominance rules and risk
measures. Section 3 makes the connection with random sampling
and mixture models. The result of Denuit and Müller (2002) is re-
called and applied to derive stochastic inequalities among different
sampling strategies. Section 4 applies these results to the deriva-
tion of model points. Several inequalities are derived in Sections 4
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and 5 to illustrate the impact of different aggregation procedures
on actuarial indices in accordance with the stop-loss order (such
as stop-loss premiums, Tail-VaRs, and spectral risk measures with
concave distortions).

2. Stochastic dominance, risk measures and the problem of
interest

2.1. Stochastic dominance rules

Before setting up the scene, we recall the definition of the
stochastic dominance and of the convex order. We refer the inter-
ested reader, e.g., to Müller and Stoyan (2002), Denuit et al. (2005)
or Shaked and Shanthikumar (2007) for more details.

Given two random variables X1 and X2 with respective distribu-
tion functions FX1 and FX2 , X1 precedes X2 in the usual stochastic
order, denoted as X1 ≼ST X2, if
FX1(x) ≥ FX2(x) for all x,
or equivalently if
FX1(x) ≤ FX2(x) for all x,

where FX1 = 1 − FX1 and FX2 = 1 − FX2 are the excess, or survival
functions corresponding to FX1 and FX2 , respectively. The latter is
also equivalent to the inequality E[h(X1)] ≤ E[h(X2)] for any non-
decreasing function h such that the expectations exist.

The usual stochastic order compares the sizes of the risks and
translates in mathematical terms the concept of ‘‘being smaller
than’’. The convex order focuses on the variabilities and enables
the actuary to compare two risks with identical means. For two
random variables X1 and X2 such that E[X1] = E[X2], X1 precedes
X2 in the convex order, denoted as X1 ≼CX X2, when

∞

x
FX1(u) du ≤


∞

x
FX2(u) du for all x. (2.1)

The inequality in (2.1) can be equivalently written as
E[(X1 − x)+] ≤ E[(X2 − x)+] for all x. (2.2)
From (2.2) it follows that X1 ≼CX X2 if and only if E[h(X1)] ≤

E[h(X2)] for all convex functions h, provided the expectations exist.

2.2. Corresponding risk measures

The stochastic order relations ≼ST and ≼CX can be defined by
means of risk measures. Recall that the Value-at-Risk (VaR) of X1
at probability level p is just the pth quantile of X1, that is,
VaR[X1; p] = F−1

X1
(p) = inf{x ∈ R|FX1(x) ≥ p}.

Then, it is easily deduced that
X1 ≼ST X2 ⇔ VaR[X1; p] ≤ VaR[X2; p] for all probability levels p.
So, ≼ST-inequalities can easily be interpreted as inequalities
between VaRs, or more generally between weighted averages of
VaRs (the so-called spectral risk measures, the weights being
defined from distortion functions).

Besides VaRs, Tail-VaRs also play an important role in risk
management, measuring the risk in the right tail. Specifically, the
Tail-VaR of X1 at probability level p is an average of the VaRs from
that level on, i.e.

TVaR[X1; p] =
1

1 − p

 1

p
F−1
X1
(π)dπ.

Then, it can be shown that given two risks with equal means,
X1 ≼CX X2 ⇔ TVaR[X1; p] ≤ TVaR[X2; p]
for all probability levels p.
Thus, ≼CX-inequalities can be interpreted as inequalities between
TVaRs, or more generally between spectral risk measures with
appropriate distortion functions.

2.3. Link to the problem of interest

Consider independent risks X1, . . . , Xn causing an aggregate
loss amount X1 + X2 + · · · + Xn. Let Fi be the distribution function
of Xi and let us assume that the Xis are ranked in increasing
magnitude, i.e. the stochastic inequalities

X1 ≼ST X2 ≼ST . . .≼ST Xn

hold true. Our aim is to build two sets of independent and
identically distributed random variables, henceforth denoted as
X+

1 , . . . , X
+
n and X−

1 , . . . , X
−
n , such that

X−

1 + X−

2 + · · · + X−

n ≼CX X1 + X2 + · · · + Xn

≼CX X+

1 + X+

2 + · · · + X+

n . (2.3)

3. Methodological results

The derivation of the upper bound in (2.3) turns out to be
related to repeated sampling schemes from a given population.
Mixtures of distributions are involved and this is why we consider
in this section conditionally independent random variables, given
a mixing random vector. Specifically, consider the random vector
(Z1, . . . , Zn) with conditional distribution depending on a mixing
vector parameter (Θ1, . . . ,Θn) as follows:

P1 Component Zi depends only onΘi, i.e. the identity

Pr[Zi ≤ t|Θ1 = θ1, . . . ,Θn = θn] = Pr[Zi ≤ t|Θi = θi]

= Fi(t|θi)

holds for every i ∈ {1, . . . , n}, where Fi(·|θi) is the conditional
distribution function of the ith component, givenΘi = θi.

P2 The components Z1, . . . , Zn are conditionally independent,
i.e. the identity

Pr[Z1 ≤ t1, . . . , Zn ≤ tn]

=


θ1

. . .


θn

n
i=1

Fi(ti|θi)dθ1 . . . dθn

holds for every t1, . . . , tn.

Unconditionally, however, there may be dependence among
the random variables Z1, . . . , Zn induced by the dependence
structure of (Θ1, . . . ,Θn). Denuit and Müller (2002) investi-
gated how the distribution of (Θ1, . . . ,Θn) affects the distribu-
tion of (Z1, . . . , Zn), especially how the dependence structure of
(Z1, . . . , Zn) depends on the one of (Θ1, . . . ,Θn). We recall their
result in the next property. To this end, we need the supermodular
order. Let S = (S1, . . . , Sm) and T = (T1, . . . , Tm) be two ran-
dom vectors where, for each i, Si and Ti have the same marginal
distributions. Then, S is less than T under supermodular order, de-
noted S ≼SM T , if E [φ(S)] ≤ E [φ(T )] for all supermodular func-
tions φ, given that the expectations exist. Recall that a function
φ : Rm

→ R is supermodular if

φ(x1, . . . , xi + ε, . . . , xj + δ, . . . , xm)
−φ(x1, . . . , xi + ε, . . . , xj, . . . , xm)

≥ φ(x1, . . . , xi, . . . , xj + δ, . . . , xm)
−φ(x1, . . . , xi, . . . , xj, . . . , xm)

holds for all x = (x1, . . . , xm) ∈ Rm, 1 ≤ i ≤ j ≤ m and all
ε, δ > 0. SeeMarshall andOlkin (1979) for examples of supermod-
ular functions. The supermodular order is used to compare random
vectors S and T with different levels of dependence.
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