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a b s t r a c t

Support Vector Machines (SVM) have been in the forefront of machine learning research for many years
now. They have very nice theoretical properties and have proven to be efficient in many real life appli-
cations but the design of SVM training algorithms often gives rise to challenging optimization issues.
We propose here to review the basics of Support Vector Machine learning from a multi-agent optimiza-
tion perspective. Multi-agents systems break down complex optimization problems into elementary
‘‘oracle’’ tasks and perform a collaborative solving process resulting in a self-organized solution of the
complex problems. We show how the SVM training problem can also be ‘‘tackled’’ from this point of view
and provide several perspectives for binary classification, hyperparameters selection, multiclass learning
as well as unsupervised learning. This conceptual work is illustrated through simple examples in order to
convey the ideas and understand the behavior of agent cooperation. The proposed models provide simple
formulations of complex learning tasks that are sometimes very difficult to solve with classical optimi-
zation strategies. The ideas that are discussed open up perspectives for the design of new distributed
cooperative learning systems.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

SVMs are known as powerful mathematical tools for classifica-
tion as well as regression tasks (Cristianini & Shawe-Taylor, 2001;
Scholkopf & Smola, 2001). They have proven good capabilities for
the classification of complex and large datasets. Many successful
implementations have been developed for various types of
applications: medical diagnosis (Fung & Mangasarian, 2006; Lee,
Mangasarian, & Wolberg, 1999), manufacturing (Balakrishna,
Raman, Santosa, & Trafalis, 2008; Gilbert, Raman, Trafalis,
Obeidat, & Aguirre-Cruz, 2009), meteorology (Trafalis, Adrianto, &
Richman, 2007), hand digits recognition (Decoste & Schölkopf,
2002), fraud detection (Chan & Stolfo, 1998), and many others.

The underlying concepts are based on empirical risk theory
(Vapnik, 1998) and the available algorithms make use of convex
optimization techniques (Boyd & Vandenberghe, 2004). A strong
focus is now put on the ever increasing size of datasets and new
algorithms based on first order stochastic optimization have now
emerged (Bottou, 1997; Bousquet & Bottou, 2007).

Training speed has therefore been greatly reduced by combin-
ing ‘‘cheap’’ first order optimization techniques with stochastic
frameworks that process only samples of data at a time. The
increasing dimensions of datasets and the emergence of online
applications where data is only available dynamically bring new
and great challenges to the machine learning and optimization
communities. Additionally, most learning algorithms require the
selection of hyperparameters. These parameters are usually
problem dependent and control for example the trade-off between
training accuracy and generalization performance (ability to
generalize prediction to unseen data) or some mapping function
(or usually its corresponding kernel function) that will transform
the problem into a linear problem. Selecting the optimal parame-
ters is known as model selection. It is often critical in real life appli-
cations and no matter how effective and fast the training
procedure is, if the hyperparameters are not tuned in a proper
way, the resulting model will not generalize well to new data
(Hastie, Rosset, Tibshirani, & Zhu, 2003/04). Model selection is usu-
ally done through the so-called k-fold Cross Validation (CV) where
the data is split in k subsets and k training procedures are
performed with k� 1 subsets as training data and the remaining
subset as validation data (swapping the training and validation
subsets for each training procedure) (Hastie, Tibshirani, &
Friedman, 2009). The k-fold cross validation is combined with a
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grid search method to estimate the optimal hyperparameters. The
CV is statistically valid but has two major drawbacks: (1) if
datasets are large, it can become extremely time expensive and
in practice unrealistic, (2) the grid search will only go over a very
limited and discrete set of values of the hyperparameters while
the optimal parameters could lie in between grid points.

To overcome these drawbacks, some techniques making use of
bi-level SVM formulations have been investigated. The idea is to
perform descent techniques with respect to the hyperparameters
while trying to find the optimal separating hyperplane (Couellan
& Wang, 2014; Du, Peng, & Terlaky, 2009; Kunapuli, Bennett, Hu,
& Pang, 2008). These techniques address successfully the problem
of auto-selecting the trade-off (training accuracy/generalization
performance) parameter but do not extend to the problem of tun-
ing the kernel function parameter that arises in the case of nonlin-
ear learning systems.

Alternatively, to design learning systems that are able to adjust
dynamically to online data as well as being able to self-adjust the
problem hyperparameters, we investigate a novel approach. We
propose to look at the SVM model and its parameter selection as
a whole and perform optimization on a system involving various
natures of variables. These variables are interconnected in a calcu-
lus network so that it can be considered as a complex system. To
solve these types of naturally complex tasks, one way is to make
use of an Adaptive Multi-Agent System (AMAS) where autonomous
agents are each given part of the optimization problem and coop-
eration between them takes place to solve the overall problem.

A multi-agent system (MAS) (Weiss, 1999) is a system com-
posed of several autonomous software entities (the agents), inter-
acting among each others (usually by sending information and
request messages) and with their environment (by observing and
modifying it). The autonomy of an agent is the fundamental charac-
teristic that differentiates it from, for example, the computer sci-
ence concept of object. While an object is a passive entity
encapsulating some data and functions, waiting to be solicited,
an agent is capable of reacting to its environment and displaying
pro-activity (activity originating from its own decision). From this
comparison it should be clear that the concept of agent is, like the
concept of object, the building brick of a paradigm which can be
used to model a complex reality. And indeed, agents have been
used in a great variety of fields, a fact which can contribute to
explain the difficulty to produce a unified definition of the concept.

While it is not true for all MAS, some interesting properties can
be achieved when taking advantage of the autonomy of the agents.
This autonomy, coupled with an adequate behavior of the agents,
can lead to systems able to adjust, organize, react to changes, etc.
without the need for an external authority to guide them. These
properties are gathered under the term self-⁄ capabilities (Di
Marzo Serugendo et al., 2011) (self-tuning, self-organizing, self-
healing, self-evolving. . .). Not all MAS necessarily present all of
these self-⁄ capabilities but, as a result of building a system from
autonomous and locally situated agents, many MAS will exhibit
them to some degree. Consequently, MAS are often relevant for
dynamically taking into account changes in their environment.
For example, a MAS in charge of regulating the traffic of packets
in a computer network could be able to react efficiently to the dis-
appearance of some of the relay nodes.

MAS have been applied to a great variety of fields: social simu-
lation, biological modeling, systems control, robotics, etc. and
agent-oriented modeling can be seen as a programming paradigm
in general, facilitating the representation of a problem.

A particular approach to MAS relying strongly on self-⁄ proper-
ties is the AMAS technology and underlying theory (Georgé,
Edmonds, & Glize, 2004). A designer following this approach
focuses on giving the agent a local view of its environment, means
to detect problematic situations and guidelines to act in a cooper-

ative way, meaning that the agents will try to achieve their goals
while respecting and helping the other agents around them as best
as they can. The fact that the agents do not follow a global directive
towards the solving of the problem but collectively build this solv-
ing, produces an emergent problem solving process that explores the
search space of the problem in original ways.

Modeling SVMs as AMAS has several advantages over more
classical mathematical strategies. It avoids running unnecessary
training procedures for non-optimal regions of the hyperparame-
ters space. The selected optimal hyperparameters values are more
accurate as they are not constrained on a grid but can take freely
any value of the space. Finally, the use of AMAS opens the door
to parallelization, decomposition and distributed computation.
The work presented here can be seen as preliminary work to illus-
trate the possible perspectives that further research along this area
could give. Current research in SVM has generated a great deal of
work on model selection for binary classification and single kernel
techniques with possible but sometimes expensive (complexity
wise) extensions to multi-class and multiple kernel variants.
Clearly the use of AMAS gives more flexible and more natural ways
to extend models to more complicated contexts.

The article is organized as follows. Section 2 recalls the basic
mathematics of classification with SVMs, Section 3 describes the
principles of AMAS. In Section 4 we propose models to perform
training tasks with AMAS and in Section 5 we incorporate the
model selection concepts into our models. Finally, in Section 6
we provide several numerical examples on simple illustrative
problems. Section 7 concludes the paper.

2. SVM classification

2.1. Linear classification

Consider a set of training vectors xi 2 Rn; i ¼ 1; . . . ; Lf g and its
corresponding set of labels yi 2 f�1;1g; i ¼ 1; . . . ; Lf g, where L is
the number of training points and n is the number of attributes
of each training point.

The soft margin SVM training problem can be expressed as fol-
lows (see for example Cristianini & Shawe-Taylor (2001), Scholkopf
& Smola (2001) for further details on the construction of the
problem):

min
w;b;n

1
2
kwk2 þ C

XL

i¼1

ni

subject to yiðw>xi þ bÞ þ ni P 1; i ¼ 1; . . . ; L;

ni P 0; i ¼ 1; . . . ; L;

ð1Þ

where ni is a slack variable associated to a penalty term in the objec-
tive with magnitude controlled by C, a problem specific parameter.
The vector w is the normal vector to the separating hyperplane
(w>xþ b ¼ 0) and b is its relative position to the origin.

Problem (1) maximizes the margin 2
kwk between the two separat-

ing hyperplanes w>xþ b ¼ 1 and w>xþ b ¼ �1. The use of slack
variables ni penalizes data points that would fall on the wrong side
of the hyperplanes.

In the constraints, observe that ni P max 0;1� yiðw>xi þ bÞf g,
therefore at optimality we have the equality:

ni ¼max 0;1� yiðw>xi þ bÞ
� �

:

Indeed, the ith point is either correctly classified (ni ¼ 0) or
penalized (ni ¼ 1� yiðw>xi þ bÞ). Consequently, we can reformu-
late Problem (1) as an unconstrained optimization problem:

min
w;b

1
2
kwk2 þ C

XL

i¼1

max 0;1� yiðw>xi þ bÞ
� �

:
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