
J. Parallel Distrib. Comput. 74 (2014) 1930–1944

Contents lists available at ScienceDirect

J. Parallel Distrib. Comput.

journal homepage: www.elsevier.com/locate/jpdc

Resource management policies for real-time Java remote invocations
Pablo Basanta-Val ∗, Marisol García-Valls
Departamento de Ingeniería Telemática, Universidad Carlos III de Madrid, Spain

h i g h l i g h t s

• An integrated technique to manage remote invocations in Java’s RMI.
• Empirical evidence on the performance given by the techniques.
• An identification of other alternatives that may benefit from the techniques.

a r t i c l e i n f o

Article history:
Received 27 September 2012
Received in revised form
25 July 2013
Accepted 1 August 2013
Available online 14 August 2013

Keywords:
Real-time Java
Real-time middleware
RT-RMI
RTSJ
DRTSJ

a b s t r a c t

A way to deal with the increasing cost of next generation real-time applications is to extend middleware
and high-level general-purpose programming languages, e.g. Java, with real-time support that reduces
development, deployment, and maintenance costs. In the particular path towards a distributed real-time
Java technology, some important steps have been given into centralized systems to produce real-time Java
virtualmachines. However, the integrationwith traditional remote invocation communication paradigms
is far from producing an operative solution that may be used to develop final products. In this context, the
paper studies how The Real-Time Specification for Java (RTSJ), the leading effort in real-time Java, may be
integratedwith Java’s RemoteMethod Invocation (RMI) in order to support real-time remote invocations.
The article details a specific approach towards the problem of producing a predictable mechanism for the
remote invocation – the core communication mechanism of RMI – via having control on the policies used
in the remote invocation. Results obtained in a software prototype help understand how the key entities
defined to control the performance of the remote invocation influence in the end-to-end response time
of a distributed real-time Java application.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

Analyzing the evolution of real-time technology – looking at
[58] to study its past evolution and at [34,46,64] to identify the fu-
ture – we appreciate how real-time systems seem to follow a path
parallel to the one previously covered by general purpose applica-
tions. If in the very early stages of its existence, influenced per-
haps by the high cost of hardware, the search for optimal and
efficient algorithmsmonopolizedmost research efforts; nowadays,
other issues more related to portability, adaptability, and main-
tainability are gainingmomentum. Indeed,whereas primitive real-
time systems were embedded and isolated pieces of code, the
current generation of real-time systems is more open and COTS
(commercial-off-the-shelf) real-time operating systems and mid-
dleware are commonly used [46,52].

In this continuous reinvention, some eyes are fixed on the use
of high abstraction programming languages – such as Java [48] –
as a new way to reduce development costs not only in general

∗ Corresponding author.
E-mail addresses: pbasanta@it.uc3m.es (P. Basanta-Val), mvalls@it.uc3m.es

(M. García-Valls).

purpose applications but also in real-time systems [11,48]. The
use of Java attracts attention on specific topics such as byte-code
efficiency, real-time portability, predictable code downloading,
and especially on automatic memory management. The financial
benefits may be quite interesting too—some reports on general
purpose productivity [50,51] promise improvements ranging from
20% to 140%when instead of C++ or ADA, developers choose Java.

In the specific area of real-time Java, extraordinary efforts have
been carried out for centralized systems with the definition of The
Real-time Specification for Java (RTSJ) [31]. This specification is
backed by a number of commercial implementations: IBM [1], Or-
acle [2], and Aicas [3] ready for developing applications. However,
one of the main efforts in the area of distributed systems: The Dis-
tributed Real-Time Specification for Java (DRTSJ) [43] – based on
the RTSJ and Java’s RemoteMethod Invocation (RMI) [4] – is still far
from producing commercial implementations [16,41]. In essence,
the DRTSJ sets the focus of its activity on the creation of a frame-
work for distributable real-time threads [13,35,63]: entities that
traverse from one node into another maintaining their trans-node
real-time characterization. In the DRTSJ, the idea of producing a
real-time remote invocation is used as an underlying transport
mechanism. The main role is played by the distributable thread

0743-7315/$ – see front matter© 2013 Elsevier Inc. All rights reserved.
http://dx.doi.org/10.1016/j.jpdc.2013.08.001

http://dx.doi.org/10.1016/j.jpdc.2013.08.001
http://www.elsevier.com/locate/jpdc
http://www.elsevier.com/locate/jpdc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpdc.2013.08.001&domain=pdf
mailto:pbasanta@it.uc3m.es
mailto:mvalls@it.uc3m.es
http://dx.doi.org/10.1016/j.jpdc.2013.08.001


P. Basanta-Val, M. García-Valls / J. Parallel Distrib. Comput. 74 (2014) 1930–1944 1931

that moves its locus of execution independently from the under-
lying infrastructure.

In this article, the central entity is the remote invocation of
RMI that is used in some RT-RMI approaches to communicate real-
time Java enabled nodes. The article proposes a model for real-
time remote invocations that takes into account the resources
involved in the end-to-end path. The way the approach develops
is starting from a typical remote invocation, extending its basic
behavior with new entities that offer real-time performance. From
this initial model, it is defined an extension to the current RMI and
RTSJ specifications to accommodate the architectural solution that
shows how to use resource for a remote invocation.

The model proposed can be used by DRTSJ to define a pre-
dictable low-level communication model for remote invocations
onwhich it could rundistributed real-time threads. Themodelmay
be also integrated in current end-to-end scheduling algorithms
(like [40,59,62]) specializing their computational models; one goal
that is out of the scope of the paper. Other RT-CORBA models (like
those lead by RTZen [45,54]) may enhance its current architecture
including specific elements defined in the model proposed (like
memory-area pools).

The rest of this article is organized as follows. Section 2 is the
state-of-the-art and reviews the main approaches that combine
the RTSJ and RMI to produce different RT-RMI technologies. Sec-
tion 3 is a background section that introduces the architecture used
for developing the model proposed. Section 4 develops the model
and the API based on RTSJ and RMI. The model is evaluated in Sec-
tions 5 and 6 which detail results of a set of empirical tests de-
signed to measure the performance of the model on Java’s RMI.
Section 5 compares real-time remote invocations against tradi-
tional RMI invocations, while Section 6 uses real applications re-
quirements taken from two application benchmarks. Finally, the
paper ends drawing conclusions and our on-going work in Sec-
tion 7.

2. Background on real-time java technologies

Due to historical reasons [41] real-time Java technology has
been considered from two different angles: centralized and dis-
tributed. On the one hand, the centralized efforts for real-time Java
have focused their attention on improving the predictability of sin-
gle real-time virtual machines. On the other hand, themost impor-
tant efforts towards a distributed real-time Java technology define
mechanisms that offer end-to-end real-time performance in re-
mote communications taking in most cases centralized technolo-
gies as departure points.

2.1. Centralized real-time java

Different approximations to real-time Javamay be grouped into
three categories: (i) based on modifications to Java APIs; (ii) based
on integrating the virtualmachine into the real-time operating sys-
tem; and (iii) based on specific hardware. Among them, the most
relevant for the real-time remote invocation are those based on ex-
tending current Java APIs—the main approaches to RT-RMI follow
this approach. This choice constrains our analysis to the following
technologies: RTSJ [5], RTCORE [6], PERC [7], RTJThreads [47], and
CJThreads [42].

• RTSJ (The Real-Time Specification for Java) is a specification for
real-time Java that defines an alternative based on modifying
the virtual machine. In this specification the virtual machine
supports the development of both general purpose and real-
time applications. Nowadays, this specification is the most rel-
evant in the area and several commercial products support this
specification.

Table 1
Different API-based approaches for centralized real-time java.

RTSJ RTCORE PERC RTJ CTJ

Scheduling A A A A A
Synchronization A A - A –
Garbage collection A A A A –
Class loading A A A – –
Class initialization A A A – –
Events A A A – –

Hardware access A A A – A

Note: Legend: A (addressed); and – (not addressed).

• RTCORE (Real-Time Core Extensions) defines an alternative
based on a new execution environment: the core. This execu-
tion environment offers a newclass hierarchy to support the de-
velopment of real-time applications which communicate with
non real-time applications using queues. Some of the princi-
ples proposed by RTCORE have been recovered in the context
of high-integrity systems based on RTSJ [8].

• PERC (Portable Executive for Reliable Control) defines twopack-
ages: one for real-time applications and another for embedded
systems. Today, this product belongs to ATEGO.

• RTJThreads (Real-time Java Threads) is a rather simple solution;
it consists only of three classes. Its scheduling model is based
on priorities and real-time synchronization protocols.

• Finally CJThreads (Communicating Threads) is based on the CSP
formalism defined by Hoare.

• Table 1 identifies the type of coverage given by each approach
to key drawbacks of Java for the development of real-time and
embedded systems. Among all of them, the table highlights the
following: (1) lack of precise scheduling policies, (2) lack of real-
time synchronization algorithms, (3) priority inversion intro-
duced by the garbage collector, (4) the behavior of the dynamic
class loader, (5) the lack of specific support for processing ex-
ternal events, and (6) access to low-level hardware. These lim-
itations are described in the NIST document requirements for
real-time Java [11].

2.2. Distributed real-time java

Whereas in centralized real-time Java there is a mature idea of
the main problems to face, the distributed area lacks a similar con-
sensus [16]. There are not fully developed specifications that help
the programmer during the design of distributed real-time appli-
cations or implementations that may be used in the development
of commercial applications. Mainly there are two promising initia-
tives that combine two specifications for real-time Java (RTSJ and
RTCORE) with two distribution technologies: RT-CORBA and RMI.

The RTZen project [53] is one of the main approaches fol-
lowing the RT-CORBA path. It uses RTSJ to improve the pre-
dictability of RT-CORBA using lessons learnt from the RT-CORBA
architecture. The model proposed uses resources that are defined
in RT-CORBA like thread and connection pools. However, it also
adds others like the memory pool that is not defined in the RT-
CORBA specification.Memory area poolsmay be used in RT-CORBA
to remove the garbage collector from the end-to-end remote in-
vocation (following a model similar to the NhRo paradigm [22])
adapted to the RT-CORBAmodel. Theway applications define their
real-time parameterization is also different, whereas RTZen fol-
lows the RT-CORBA’s architecture (i.e. with ORBs and POAs), the
model proposed is closer to the RTSJ’s architecture than RTZen is.

The rest of this state-of-the-art focuses on RMI-based ini-
tiatives: DRTSJ [12], RT-RMI-York [33], RT-RMI-UPM [61], and
RT-RMI-TA&M [55] which are closer to the model proposed by
DREQUIEMI than RTZen.



https://isiarticles.com/article/44610

