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a b s t r a c t

In this paper, we use data envelopment analysis (DEA) to preprocess training data cases before the max-
imum decisional efficiency (MDE) principle is used to estimate discriminant function parameters. Using
an example from the literature and simulated datasets, we compare the performance of DEA-MDE pro-
cedure for parameter estimation with traditional MDE procedure without data preprocessing. The results
of our experiments indicate that the DEA-MDE procedure eliminates some inconsistencies caused by
MDE principle, provides results that are consistent with an ensemble of expert decisions, reduces dimen-
sionality of examples used in training datasets, and performs equal to or better than the MDE procedure
for holdout sample tests. The DEA-MDE procedure appears to be sensitive to class data distribution and
best results are obtained when a class data distribution is exponential.

� 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Data envelopment analysis (DEA) is a technique developed to
measure efficiency of decision-making units (DMUs) in a variety
of settings. Since its introduction, the technique has been used
for several manufacturing, banking, health care and service indus-
tries. Recently, DEA has been used for data-mining applications.
Among the applications of DEA in data mining are the uses of
DEA for data preprocessing in forecasting applications (Pendhar-
kar, 2005; Pendharkar & Rodger, 2003), outlier detection (Banker
& Chang, 2006), classification (Pendharkar, 2011; Seiford & Zhu,
1998; Troutt, Rai, & Zhang, 1996), cluster analysis (Po, Guh, & Yang,
2009) and inverse classification problems (Pendharkar, 2002). We
do not know of any studies that have used DEA for data preprocess-
ing for classification applications. Pendharkar (2005) used the DEA
based data preprocessing for forecasting applications where pre-
dicted variable was continuous. In classification applications, pre-
dicted variable is binary and the application of DEA for data
preprocessing requires a different approach. An application of
DEA for data preprocessing in classification applications would
be desirable for at least two reasons. First, data preprocessing
would result in fewer records and less computational effort. Sec-
ond, data preprocessing would result in elimination of trivial clas-
sification examples and outliers resulting in a classification

function that may have better generalizability due to lower train-
ing data over fitting2.

There is substantial literature on data preprocessing (Kone &
Karwan, 2011) for classification problems (Chen, Hsu, & Chang,
2010; Wang & Shi, 2008). Some of the reasons for data preprocess-
ing are to improve scalability (Wang & Shi, 2008), reduce bias orig-
inating from class imbalance (Chen, Hsu, & Chang, 2010), and
improve generalizability (Pendharkar, 2005). Most DEA data min-
ing applications consider single output multiple input settings
(Pendharkar, 2011; Seiford & Zhu, 1998; Troutt et al., 1996). Banker
(1993) provides a statistical foundation for DEA under the single
output multiple input setting where DEA estimators are shown
to be maximum likelihood estimators (MLE) of non-parametric
probability density functions. Banker (1993) argues that the pri-
mary difference between statistical MLE and DEA estimators is
the assumption that the production frontier in DEA is non-para-
metric monotone increasing and concave function. When all the
assumptions of single output, multiple inputs and concave mono-
tone increasing production function are satisfied, Banker (1993)
showed that DEA estimators maximize the likelihood for a broad
class of density functions including exponential and half-normal
distributions.
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2 Training data over fitting is a concern in machine learning literature (see
Bhattacharyya and Pendharkar (1998)). Training data over fitting implies learning
‘‘noise’’ in the dataset. Noisy examples are examples that may be considered as
outliers and learning their characteristics may adversely impact generalizability of
learned classification rules.
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When DEA is used for classification, DMUs with efficiency (n)
score of 1 are considered to lie on the classification boundary
or envelopment that separates one class from another (Pendhar-
kar, 2011). If we define one-sided deviation term m = (1 � n) then
maximizing likelihood of the probability density function for m,
a(m), is equivalent to minimizing the sum of deviations if a(m) is
exponential or equivalent to minimizing the sum of squared devi-
ations if a(m) is half-normal (Banker, 1993). Thus, computing effi-
ciencies of DMUs and removing the DMUs with low efficiency
scores is equivalent to removing DMUs that lie in the tail of
a(m). As low efficiency DMUs are removed from the original data-
set, the MLE estimate for the remaining dataset with fewer DMUs
will be lower than the original dataset. The lowering of MLE esti-
mate may achieves better generalization due to removal of outli-
ers/trivial classification cases, however, care must be exercised to
not eliminate too many DMUs where the new model may lose
generalizability compared to the model built from the original
dataset.

Troutt (1995) proposed a related decisional efficiency based
procedure for parameter estimation of certain optimization mod-
els. Troutt (1995) showed that these parameter estimation mod-
els can be formulated using the maximum decisional efficiency
(MDE) principle. The MDE model was shown to be a MLE for
certain class of monotone increasing density functions. The pri-
mary difference between MDE and DEA is that in former case
a production function is specified in finite number of parameters,
whereas in case of DEA the number of parameters to be esti-
mated increases with the sample size (Banker, 1993). For finite
sample sizes, DEA estimators would be biased and provide
MLE estimates below the theoretical frontier [2] suggested by
MLE model. Given that Troutt (1995) proved that the MDE mod-
el maximizes likelihood of certain monotone increasing density
functions, it can be assumed that DEA estimators would provide
MLE estimates below the theoretical frontier suggested by the
MDE model.

To illustrate the utility of DEA for data preprocessing for MDE
linear case valuation models, we consider two different scenarios.
In the first scenario, we assume a classification problem where
classification data is generated by several decision-makers, which
in the context of DEA may be considered as different decision-mak-
ing processes. Given different decision-making processes, DEA is
applied independently to screen examples that are fed into MDE
data aggregation and parameter estimation process (Troutt,
1995; Troutt, Rai, & Tadisina, 1997; Troutt, Zhang, Tadisina, &
Rai, 1997). The MDE principle aggregates data from different deci-
sion-making processes or decision-makers and generates a linear
case valuation model that can be used for classification (Troutt,
Rai, et al., 1997; Troutt, Zhang, et al., 1997). When the DEA is used
to preprocess data for the MDE model, we call our procedure DEA-
MDE, otherwise the procedure is called MDE. In the second sce-
nario, we consider classic classification problem where training
data comes from one source and represents only one decision-
making process. In both scenarios, we compare DEA-MDE results
with the MDE results.

The rest of the paper is organized as follows. In Section 2, we
provide an overview of the DEA based preprocessing and the
MDE principle based data aggregation for linear case valuation.
In Section 3, we illustrate the application of DEA-MDE procedure
using a pre-reported example of multiple decision-maker data;
and compare it with the MDE procedure without data preprocess-
ing and a multiple decision-maker ensemble of what we call over-
lapping cases. In Section 4, using simulated datasets, we compare
the application of DEA-MDE and the MDE procedures for our sec-
ond scenario. In Section 5, we conclude the paper with a summary
and provide a few directions for future work.

2. DEA procedure for data preprocessing and the MDE principle

For over a decade, DEA models have been used for classification
(Troutt et al., 1996; Pendharkar, 2002; Pendharkar, 2011; Seiford &
Zhu, 1998). Pendharkar (2011) used input-oriented variable re-
turns to scale models for developing classification frontiers for
binary classification problems. To describe Pendharkar (2011)
input-oriented models, we assume that the data matrix D =
{<x1,c1>, . . ., <xn,cn>} for a classification problem with two classes
accept (A) and reject (R) is available. The individual elements of
the matrix D are represented as xij, where i e {1, ..,n} represents
the row index and j e {1, ..,m} represents the column index. The last
column in the data class matrix D represents the class label for the
vector in a row, which is denoted by ci, where ci was the class as-
signed by a decision-maker. We make an assumption of condi-
tional monotonicity, where higher values of decision-making
attributes (xij) indicate higher probability of accept class classifica-
tion decision. If we partition the dataset D into DA and DR, where
DA = {xi | ci = A, "i e {1, . . .,n}} and DR = D � DA. The accept class
frontier is given by solving following set of linear programs for
each vector xi e DA.

Minimize ni; i ¼ 1; . . . ; n; and i 2 DA ð1Þ

subject to:

Xn

i¼1

kixij � nixij 6 0; j ¼ 1; . . . ; m ð2Þ

Xn

i¼1

ki ¼ 1 ð3Þ

ki P 0 8i ¼ 1; . . . ; n and i 2 DA ð4Þ

If for some i = {1, . . .,n}, solution of (1)–(4) yields a value of ni⁄ = 1
then that case was considered to lie on the DEA accept class frontier,
otherwise (ni⁄ < 1) it was considered to be above the accept class
frontier indicating higher degree of acceptance under conditional-
monotonicity assumption. Similarly, a reject class frontier is given
by solving the following set of linear programs by considering each
vector xi e DR.

Minimize ni ¼ 1
xi

� �
; i ¼ 1; . . . ; n; and i 2 DR ð5Þ

subject to:

Xn

i¼1

kixij �xixij P 0; j ¼ 1; . . . ; m ð6Þ

Xn

i¼1

ki ¼ 1 ð7Þ

ki P 0 8i ¼ f1; . . . ;ng; xiunrestricted and i 2 DR: ð8Þ

For any i where the value of ni⁄ = 1, the case was considered to lie on
the reject class frontier. Otherwise, it was considered to lie under
the reject class frontier with value of ni⁄ < 1.

Figs. 1 and 2 illustrate typical accept class and reject class fron-
tiers, where m = 2. The frontiers are defined by points taking values
of ni⁄ = 1 (denoted by stars). The inefficient examples for accept
class A lie above the accept class frontier, and inefficient examples
for reject class fall below the reject class frontier. When ni⁄ values
are less than 0.5, it means that these cases are very easy to classify
into either accept class or reject class because these cases will typ-
ically lie farther from the classification decision boundary.
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