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a b s t r a c t

Amultilevelmodel for ordinal data in generalized linearmixedmodels (GLMM) framework
is developed to account for the inherent dependencies among observationswithin clusters.
Motivated by a data set from the British Social Attitudes Panel Survey (BSAPS), the
random district effects and respondent effects are incorporated into the linear predictor to
accommodate the nested clusterings. The fixed (random) effects are estimated (predicted)
by maximizing the penalized quasi likelihood (PQL) function, whereas the variance
component parameters are obtained via the restricted maximum likelihood (REML)
estimation method. The model is employed to analyze the BSAPS data. Simulation studies
are conducted to assess the performance of estimators.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Ordinal responses are very common in different areas of scientific research (e.g. behavioral research, medical research
and social attitude studies). However, due to the complexity of the model, corresponding statistical inference about the
ordinal responses is in general difficult, especially in the situationwhere the data have complex correlation structure. A class
of three-level mixed effects models for ordinal data was proposed by Raman and Hedeker (2005) and both proportional
and non-proportional odds models were considered. Furthermore, for the ordinal data with the clustered structure,
Liu and Hedeker (2006) proposed a mixed-effects item response theory model that allows for three-level multivariate
ordinal outcomes and accommodates multiple random subject effects. For the model estimation, both Raman and Hedeker
(2005) and Liu and Hedeker (2006) adopted Gauss–Hermite quadrature to integrate out the random effects numerically to
obtain themarginal likelihood function. In the context of complexmultilevel structures, Fielding and Yang (2005) developed
generalized linear mixed models (GLMMs) for ordered responses using quasi-likelihood with up to the second-order terms
in the Taylor expansion. Chakraborty andDas (2008), in a pharmacokinetic study, considered a latent nonlinearmixed effects
model to summarize and analyze multivariate ordinal data. They employed Monte Carlo EM-based methods for parameter
estimation and inference. Essentially, all of these methods fall into the domain of marginal models (Lee and Nelder, 2004).
However, in many situations where the random cluster effects themselves are of research interest, it is useful to obtain the
prediction of random effects under the framework of conditional likelihood inference (Jiang et al., 2001; Lee and Nelder,
2004).
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The current study is motivated by the data collected from the British Social Attitudes Panel Survey (BSAPS). The survey
consisted of data collection in four consecutive years (1983–1986). In each year, 54 polling districts were involved and
264 adults living at these addresses were surveyed. Therefore, respondents who reside in the same polling district are
exposed to the same set of unobservable district effects. Also, the data collected from the same respondent are deemed
to be correlated (detailed discussion is provided in Section 3). In addition to the assessment of the fixed effects, the random
district effects as well as the random respondent effects are also of research interest. Accordingly, instead of integrating out
the random effects as in the marginal models, we adopt the conditional likelihood approach (McGilchrist, 1994; Lee and
Nelder, 1996, 2004) to analyze the data, where the estimation/prediction of fixed/random effects is obtained in principle by
penalized quasi likelihood (PQL) estimation method (Breslow and Clayton, 1993). The PQL estimator carries over the spirit
of best linear unbiased prediction (BLUP) into the non-normal framework (McGilchrist, 1994; McGilchrist and Yau, 1995) in
a computationally attractive way. Moreover, its theoretical properties have been investigated in different perspectives, e.g.
by Breslow and Clayton (1993), McGilchrist (1994), Lee and Nelder (1996), Yau and Kuk (2002), and Yu and Yau (2012). In
addition, Jiang et al. (2001) investigated the consistency of the PQL estimators under the framework of maximum posterior
estimation and proved that the PQL is asymptotically accurate under certain regularity conditions.

This paper is organized as follows. A multilevel cumulative logistic regression model with random effects is presented
in Section 2. The proposed method is applied to analyze the BSAPS data in Section 3. Simulation studies are conducted to
assess the performance of the estimators in Section 4. The last section provides some concluding discussions and model
extensions.

2. Multilevel cumulative logistic regression model with random effects

2.1. Model formulation

Let yist (i = 1, 2, . . . ,m; s = 1, 2, . . . , ni; t = 1, 2, . . . , Tis) represent the ordinal response for the t-th observation of
the s-th respondent in the i-th district, where m is the number of districts, ni is the number of respondents within the i-th
district, Tis is the number of repeated observations for the s-th respondent in the i-th district, the total number of respondents
being n =

m
i=1 ni, and the total number of observations being N =

m
i=1

ni
s=1 Tis.

Denote xist as the vector of covariates corresponding to the t-th observation for the s-th respondent in the i-th district.
Based on the GLMM framework, two sets of random effects are considered: a = (a1, a2, . . . , am)T, which represents the
vector of random district effects, and ai is the i-th district effect; b =


bT1, b

T
2, . . . , b

T
m

T is the vector of random respondent

effects,where bi =

bi1, bi2, . . . , bini

T, and bis is the s-th respondent effect in the i-th district. In addition, a and b are assumed
to have a probability density function π(a, b | ϕ), where ϕ is the vector of variance component parameters. Conditional on
a and b, yist are independent and the model is defined by

logitP (yist ≤ j|ξ, a, b) = log


γj (xist |ξ, a, b)
1 − γj (xist |ξ, a, b)


, j = 1, 2, . . . , k,

= θj + ηist ,

= θj + xTistβ + ai + bis, (1)

where γj (xist |ξ, a, b) = P (yist ≤ j|ξ, a, b) , ξ =

θT, βT

T
, θj is the intercept of the j-th cumulative logit, β is the p-

dimensional vector of fixed effects, and k is the number of ordinal categories. The intercepts satisfy θ1 < θ2 < · · · < θk−1
such that γj (xist |ξ, a, b)− γj−1 (xist |ξ, a, b) remains positive, γ0 (xist |ξ, a, b) = 0 and γk (xist |ξ, a, b) = 1.

The penalized log-likelihood function is l = l1 + l2, with

l1 =

m
i=1

ni
s=1

Tis
t=1

k
j=1

δist,j log

γj (xist |ξ, a, b)− γj−1 (xist |ξ, a, b)


, (2)

where δist,j = 1 if yist = j and 0 otherwise, and l2 = logπ(a, b | ϕ) is the penalty term. Profiling on ϕ, the BLUP-type
estimators/predictors of fixed/random effects are obtained by maximizing l and the obtained estimators/predictors can be
viewed as a natural extension of BLUP (Jiang, 2007). In fact, if y is normally distributed (with conditional mean ηist ) and
π(a, b | ϕ) is the probability density function of normally distributed random effects vectors a, b, the resulting estimation
method will reduce to BLUP. Detailed derivations of the BLUP estimation method were given in Robinson (1991). Further
discussions and its extensions can be found in Jiang (2007). In principle, there are different choices for π(a, b | ϕ), we
consider two typical examples.

Example 1. If the random effects, a and b, are assumed to follow N

0, σ 2

1 Im

and N


0, σ 2

2 In

, respectively, then,

l2 = −
1
2


m log


2πσ 2

1


+ σ−2

1 a
T
a


+


n log


2πσ 2

2


+ σ−2

2 b
T
b

, (3)

and in this scenario, ϕ = (σ 2
1 , σ

2
2 )

T.
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