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a b s t r a c t

The ν-Support Vector Regression (ν-SVR) is an effective regression learning algorithm, which has the
advantage of using a parameter ν on controlling the number of support vectors and adjusting the width
of the tube automatically. However, compared to ν-Support Vector Classification (ν-SVC) (Schölkopf et al.,
2000), ν-SVR introduces an additional linear term into its objective function. Thus, directly applying the
accurate on-line ν-SVC algorithm (AONSVM) to ν-SVR will not generate an effective initial solution. It is
the main challenge to design an incremental ν-SVR learning algorithm. To overcome this challenge, we
propose a special procedure called initial adjustments in this paper. This procedure adjusts the weights
of ν-SVC based on the Karush–Kuhn–Tucker (KKT) conditions to prepare an initial solution for the
incremental learning. Combining the initial adjustmentswith the two steps of AONSVM produces an exact
and effective incremental ν-SVR learning algorithm (INSVR). Theoretical analysis has proven the existence
of the three key inverse matrices, which are the cornerstones of the three steps of INSVR (including the
initial adjustments), respectively. The experiments on benchmark datasets demonstrate that INSVR can
avoid the infeasible updating paths as far as possible, and successfully converges to the optimal solution.
The results also show that INSVR is faster than batch ν-SVR algorithms with both cold and warm starts.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

In real-world regression tasks, such as time-series prediction
(e.g. Cao and Tay (2003); Lu, Lee, and Chiu (2009)), training data
is usually provided sequentially, in the extreme case, one example
at a time, which is an online scenario (Murata, 1998). Batch algo-
rithms seems computationally wasteful as they retrain a learning
model from scratch. Incremental learning algorithms are more ca-
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pable in this case, because the advantage of the incremental learn-
ing algorithms is that they incorporate additional training data
without re-training the learning model from scratch (Laskov et al.,
2006).

ν-Support Vector Regression (ν-SVR) (Schölkopf, Smola,
Williamson, & Bartlett, 2000) is an interesting Support Vector
Regression (SVR) algorithm, which can automatically adjust the
parameter ϵ of the ϵ-insensitive loss function.1 Given a training
sample set T = {(x1, y1), . . . , (xl, yl)} with xi ∈ Rd and yi ∈ R,

1 The ϵ-insensitive loss function used in SVR is defined as |y − f (x)|ϵ =
max{0, |y − f (x)| − ϵ} for a predicted value f (x) and a true output y, which does
not penalize errors below some ϵ > 0, chose a priori. Thus, the region of all (x, y)
with |{y− f (x)| ≤ ϵ} is called ϵ-tube (see Fig. 1).
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Schölkopf et al. (2000) considered the following primal problem:

min
w,ϵ,b,ξ (∗)

i

1
2
⟨w, w⟩ + C ·


νϵ +

1
l

l
i=1


ξi + ξ ∗i


s.t. (⟨w, φ(xi)⟩ + b)− yi ≤ ϵ + ξi, (1)

yi − (⟨w, φ(xi)⟩ + b) ≤ ϵ + ξ ∗i ,

ξ
(∗)
i ≥ 0, ϵ ≥ 0, i = 1, . . . , l.

The corresponding dual is:
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where, following Schölkopf et al. (2000), training samples xi are
mapped into a high dimensional reproducing kernel Hilbert space
(RKHS) (Schölkopf & Smola, 2001) by the transformation function
φ. K(xi, xj) = ⟨φ(xi), φ(xj)⟩, ⟨·, ·⟩ denotes inner product in RKHS.
(∗) is a shorthand implying both the variables with and without as-
terisks. C is the regularization constant, and ν is the introduced
proportion parameter with 0 ≤ ν ≤ 1, which lets one control
the number of support vectors and errors. To bemore precise, they
proved that ν is an upper bound on the fraction of margin errors,
and a lower bound on the fraction of support vectors. In addition,
with probability 1, asymptotically, ν equals both fractions.

Compared with ϵ-Support Vector Regression (ϵ-SVR) (Smola &
Schölkopf, 2003), ν-SVR introduces two complications: the first
one is that the box constraints are related to the size of the training
sample set, and the second one is that one more inequality con-
straint is introduced in the formulation. Compared with ν-Support
Vector Classification (ν-SVC) (Schölkopf et al., 2000), ν-SVR intro-
duces an additional linear term into the objective function of (2).
To sum up, the formulation of ν-SVR is more complicated than the
formulations of ϵ-SVR and ν-SVC.

Early studies about SVR mostly focus on solving large-scale
problems. For example, Chang and Lin (2001, 2002) gave SMO
algorithm and implementation for training ϵ-SVR. Tsang, Kwok,
and Zurada (2006) proposed core vector regression for training
very large regression problems. Shalev-Shwartz, Singer, Srebro,
and Cotter (2011) proposed stochastic sub-gradient descent algo-
rithmwith explicit feature mapping for training ϵ-SVR. Ho and Lin
(2012) and Wang and Lin (2014) proposed coordinate descent al-
gorithm for linear L1 and L2 SVR. Due to the complications in the
formulation of ν-SVR as mentioned above, there are still no effec-
tive methods proposed for solving incremental ν-SVR learning.

Let us pay our attention to the exact incremental anddecremen-
tal SVM algorithm (Cauwenberghs & Poggio, 2001) (hereinafter
referred to as the C&P algorithm). Since the C&P algorithm was
proposed by Cauwenberghs and Poggio in 2001, further studies
mainly focus on two aspects. One is focusing on the C&P algorithm
itself. For example, Gu, Wang, and Chen (2008) and Laskov et al.
(2006) providedmore detailed theoretical analysis for it. Gâlmeanu
and Andonie (2008) addressed some implementation issues. Kara-
suyama and Takeuchi (2010) proposed an extension versionwhich
can updatemultiple samples simultaneously. The other applies the
C&P algorithm to solve other problems. For example, Gretton and
Desobry (2003) and Laskov et al. (2006) applied it to implement-
ing an incremental one-class SVM algorithm. Martin (2002) and
Ma, Theiler, and Perkins (2003) introduced it to ϵ-SVR (Vapnik,
1998) and developed an accurate on-line support vector regression

(AOSVR). Recently, Gu et al. (2012) introduced the C&P algorithm to
ν-SVC and proposed an effective accurate on-line ν-SVC algorithm
(AONSVM),which includes the relaxed adiabatic incremental adjust-
ments and the strict restoration adjustments. Further, Gu and Sheng
(2013) proved the feasibility and finite convergence of AONSVM.
Because great resemblance exists in ν-SVR and ν-SVC, in this pa-
per, we wish to design an exact and effective incremental ν-SVR
algorithm based on AONSVM.

As ν-SVR has an additional linear term in the objective func-
tion compared with ν-SVC, directly applying AONSVM to ν-SVR
will not generate an effective initial solution for the incremen-
tal ν-SVR learning. To address this issue, we propose a new in-
cremental ν-SVR algorithm (collectively called INSVR) based on
AONSVM. In addition to the basic steps of AONSVM (i.e., the relaxed
adiabatic incremental adjustments and the strict restoration ad-
justments), INSVR has an especial adjusting process (i.e. initial
adjustments), which is used to address the complications of the
ν-SVR formulation and to prepare the initial solution before the
incremental learning. Through theoretical analysis, we can show
the existence of the three key inverse matrices, which are the cor-
nerstone of the initial adjustments, the relaxed adiabatic incremen-
tal adjustments, and the strict restoration adjustments, respectively.
The experiments on benchmark datasets demonstrate that INSVR
can avoid the infeasible updating path as far as possible, and suc-
cessfully converge to the optimal solution. The results also show
that INSVR is faster than batch ν-SVR algorithms with both cold
and warm starts.

The rest of this paper is organized as follows. In Section 2, we
modify the formulation of ν-SVR and give its KKT conditions. The
INSVR algorithm is presented in Section 3. The experimental setup,
results and discussions are presented in Section 4. The last section
gives some concluding remarks.
Notation: To make the notations easier to follow, we give a
summary of the notations in the following list.

αi, gi The ith element of the vector α and g .
αc, yc, zc The weight, output, and label of the candidate

extended sample (xc, yc, zc).
∆ The amount of the change of each variable.
ϵ′, ∆ϵ′ If |


i∈SS

zi| = |SS |, ϵ′ and ∆ϵ′ stands for ϵ′ and
∆ϵ′, respectively. Otherwise, they will be ignored.

QSSSS The submatrix of Q with the rows and columns
indexed by SS .Q\M2 The submatrix ofQ with deleting the rows and
columns indexed by M .

Řt∗, Ř∗t The row and the column of a matrix Ř corresponding
to the sample (xt , yt , zt), respectively.

0, 1 The vectors having all the elements equal to 0 and 1,
respectively, with proper dimension.

zSS ,uSS A |SS |-dimensional column vector with all equal to
zi, and ziyi respectively.

det(·) The determinant of a square matrix.
cols(·) The number of columns of a matrix.
rank(·) The rank of a matrix.

2. Modified formulation of ν-SVR

Obviously, the correlation between the box constraints and
the size of the training sample set makes it difficult to design an
incremental ν-SVR learning algorithm. To obtain an equivalent
formulation, whose box constraints are independent to the size of
the training sample set, wemultiply the objective function of (1) by
the size of the training sample set. Thus, we consider the following
primal problem:
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