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a b s t r a c t

Gait modification strategies play an important role in the overall success of total knee arthroplasty. There
are a number of studies based on multi-body dynamic (MBD) analysis that have minimized knee adduc-
tion moment to offload knee joint. Reducing the knee adduction moment, without consideration of the
actual contact pressure, has its own limitations. Moreover, MBD-based framework that mainly relies
on iterative trial-and-error analysis, is fairly time consuming. This study embedded a time-delay neural
network (TDNN) in a genetic algorithm (GA) as a cost effective computational framework to minimize
contact pressure. Multi-body dynamic and finite element analyses were performed to calculate gait kine-
matics/kinetics and the resultant contact pressure for a number of experimental gait trials. A TDNN was
trained to learn the nonlinear relation between gait parameters (inputs) and contact pressures (output).
The trained network was then served as a real-time cost function in a GA-based global optimization to
calculate contact pressure associated with each potential gait pattern. Two optimization problems were
solved: first, knee flexion angle was bounded within the normal patterns and second, knee flexion angle
was allowed to be increased beyond the normal walking. Designed gait patterns were evaluated through
multi-body dynamic and finite element analyses.

The TDNN-GA resulted in realistic gait patterns, compared to literature, which could effectively reduce
contact pressure at the medial tibiofemoral knee joint. The first optimized gait pattern reduced the knee
contact pressure by up to 21% through modifying the adjacent joint kinematics whilst knee flexion was
preserved within normal walking. The second optimized gait pattern achieved a more effective pressure
reduction (25%) through a slight increase in the knee flexion at the cost of considerable increase in the
ankle joint forces. The proposed approach is a cost-effective computational technique that can be used
to design a variety of rehabilitation strategies for different joint replacement with multiple objectives.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Following total knee arthroplasty (TKA), rehabilitation strate-
gies are of significant importance to accelerate patient recovery
(Isaac et al., 2005; Klein, Levine, & Hartzband, 2008), reinforce joint
functionality (Moffet et al., 2004; Rahmann, Brauer, & Nitz, 2009),
decrease gait asymmetry (Zeni, Mcclelland, & Snyder-Mackler,
2011), and augment the durability and life time of knee prostheses
(Fransen, 2011; Mont et al., 2006). Gait rehabilitations mainly aim
to decrease knee joint loading through minor changes in human
gait patterns. However, recognizing the synergistic kinematic
changes, required for joint offloading, is a challenging task, hence;
computational approaches have been used to facilitate the design

procedure. To best of our knowledge, most of the current literature
on gait modification strategies have been designed through multi-
body dynamic (MBD) analysis (Ackermann & van den Bogert, 2010;
Anderson & Pandy, 2001; Barrios, Crossley, & Davis, 2010; Barrios &
Davis, 2007; Fregly, D’Lima, & Colwell, 2009; Fregly, Reinbolt,
Rooney, Mitchell, & Chmielewski, 2007; Hunt et al., 2008;
Mündermann, Asay, Mündermann, & Andriacchi, 2008; Willson,
Torry, Decker, Kernozek, & Steadman, 2001). However, iterative
‘‘trial-and-error’’ MBD analysis, that has been performed in such
studies, is fairly time demanding which limits the applicability
and generality of the method. Hence, a cost-effective computa-
tional framework that minimizes the computational cost is of
particular interest.

Besides the computational cost, there are a number of aspects
that have not been well addressed by the conventional MBD-based
framework. First, MBD-based approach attempts to reduce the
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peak values of knee adduction moment (KAM) which is not always
a reliable measure since decreasing KAM may not necessarily
decrease knee joint loading (Walter, D’Lima, Colwell, & Fregly,
2010); and the results of such approach are sensitive to the chosen
reference frame (e.g. laboratory, floating reference frames) (Lin, Lai,
Chou, & Ho, 2001; Shull et al., 2012). Second, joint-offloading gait
patterns are likely to decrease the contact area of articulating sur-
faces that unfavorably may increase the contact pressure at the
knee joint (D’Lima et al., 2008). Therefore, reducing the contact
pressure should be concerned as the principal goal of rehabilitation
design. Conventional computational frameworks however are
inherently unable to consider the contact pressure in the design
procedure since the conventional methods require an explicit cost
function whilst the relation between gait kinematics and the resul-
tant contact pressure has not been stated explicitly before. Also,
predicting the contact pressure requires implementing finite ele-
ment analysis (FEA) which in turn increases the computational cost
(Halloran, Ackermann, Erdemir, & van den Bogert, 2010). A cost-
effective surrogate which releases the necessity of iterative FEA
is therefore of significant advantage. Third, previous studies could
not reach a general consensus about the contribution of knee flex-
ion to the knee joint offloading. Knee flexion is a key synergetic
parameter that is often increased within the clinical execution of
the rehabilitation patterns (Barrios et al., 2010; Fregly et al.,
2007; Van Den Noort, Schaffers, Snijders, & Harlaar, 2013). Several
studies concluded that increasing the knee flexion would reduce
KAM (Fregly, 2008; Fregly, D’Lima, & Colwell, 2009; Fregly et al.,
2007), whilst others showed that it has no association with KAM
(Creaby, Hunt, Hinman, & Bennell, 2013) or may even increase con-
tact pressure at the knee bearing surfaces (D’Lima et al., 2008). A
systematic investigation is required to enhance our understanding
of the contribution of knee flexion to the knee joint offloading.

Artificial neural networks (ANN) and genetic algorithm (GA) are
two relatively new techniques in the field of biomechanics. Artifi-
cial neural network (ANN) can be used as a real-time surrogate
model with the ability to learn a nonlinear relationship. Once a
set of inputs and corresponding outputs are presented to the net-
work, it will then ‘‘learn’’ the causal interactions between inputs
and outputs. Given a new set of inputs, the trained neural network
(surrogate model) can generalize the relationship to produce the
associated outputs. The ANN surrogate therefore can be of signifi-
cant advantage especially when the original model necessitates
repeating a time-consuming computation. For example, ANN has
been widely used as a surrogate of FEA (Campoli, Weinans, &
Zadpoor, 2012; Hambli, 2010; Hambli, 2011; Lu, Pulasani,
Derakhshani, & Guess, 2013; Naito & Torii, 2005; Simic, Hinman,
Wrigley, Bennell, & Hunt, 2011; Zadpoor, Campoli, & Weinans,
2013). Genetic algorithm is a time-efficient global optimization
technique which searches the entire data space to find the best
solution (Goldberg, 1989). In each iteration, only potential candi-
dates that better optimize the cost function will survive to the next
iteration. Thus, regardless of the initial point, the search data space
is iteratively modified and GA will rapidly converge to the global
optimum solution. This in turn assures the robustness of the
method and minimizes the computational effort required to find
the best solution. Moreover, GA is capable of dealing with multi-
variable data space, nonlinear input–output interactions and
non-explicit, non-differential cost function.

Therefore, the overall aim of this study was to develop a hybrid
framework of time delay neural network (TDNN) and genetic algo-
rithm (GA) to address the aforementioned limitations of the liter-
ature. In particular this study aimed to (1) optimize the gait
pattern in order to minimize the contact pressure at the knee artic-
ulating surfaces and (2) investigate the role of knee flexion in knee
joint offloading. The advantage of the proposed approach was also
compared over the existing knee rehabilitations in the literature.

2. Materials and methods

The proposed computational approach was implemented in the
following steps:

Step (1) Experimental gait analysis data were obtained from
the literature (Section 2.1), and imported into MBD analysis
to calculate gait kinematics and kinetics (Section 2.2). Knee
flexion angle and three dimensional knee joint loadings were
predicted by MBD, and then served as boundary condition
and loading profiles for the finite element simulation to cal-
culate contact pressure (Section 2.3). Gait trials were then
outlined via a number of kinematic features and the corre-
sponding maximum contact pressure values (CPRESS-max)
(Section 2.4).
Step (2) A time-delay neural network (TDNN) was trained to
learn the nonlinear relationship between kinematic features
as inputs and the corresponding CPRESS-max values as out-
put (Section2.5).
Step (3) A genetic algorithm (GA) was implemented to search
for the optimum kinematic features (optimization variables)
which minimized the CPRESS-max at the knee joint bearing
surfaces. In this GA, the trained TDNN was served as a real-
time cost function to calculate the objective value (CPRESS-
max) (Section 2.6).

2.1. Experimental gait data

Experimental gait analysis data of a single subject with unilat-
eral TKA (female, height 167 cm, mass 78.4 kg) was obtained from
the literature (https://simtk.org/home/kneeloads; accessed on June
2013). The subject walked with a variety of different gait patterns
including normal, medial thrust, trunk sway, walking pole, bouncy,
crouch, smooth and fore foot strike. Medial thrust, trunk sway and
walking pole were knee rehabilitation strategies, designed to
decrease KAM, whilst the remaining gait trials were different walk-
ing patterns to cover the span of executable gait for the subject.
Compared to normal walking, the subject walked with a slightly
decreased pelvis obliquity, slightly increased pelvis axial rotation
and leg flexion to implement medial thrust pattern. For trunk sway
pattern, the subject walked with an increased lateral leaning of the
trunk in the frontal plane over the standing leg. In walking pole, the
subject used bilateral poles as walking aids. For each gait pattern,
five gait trials were repeated under the same walking condition
at a self-selected pace. A total of two complete gait cycles were
picked up from each trial, leading to a total of 84 data sets. For fur-
ther details, see Fregly et al. (2012). Gait trials were recorded in
terms of marker trajectory data (Motion Analysis Corp., Santa Rosa,
CA) and ground reaction forces (AMTI Corp., Watertown, MA).

2.2. Multi-body dynamic

Experimental ground reaction forces and marker trajectories
were imported into the three-dimensional multi-body dynamic
simulation software, AnyBody Modeling System (version 5.2,
AnyBody Technology, Aalborg, Denmark). A lower extremity
musculoskeletal model was used in AnyBody software based on
the University of Twente Lower Extremity Model (TLEM) (Klein
Horsman, 2007). This model, available in the AnyBody published
repository, had 160 muscle units as well as foot, thigh, patella, shank,
trunk and thorax segments. Hip joint was modeled as a spherical
joint with three degrees of freedom (DOF): flexion–extension,
abduction–adduction and internal-external rotation. Knee joint
was modeled as a hinge joint with only one DOF for flexion–
extension and universal joint was considered for ankle-subtalar
complex. Since the assumptions of the simplified knee joint and rigid
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