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re-examine the problem of stochastic optimal growth with aggregate risk where the timing of the model
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1. Introduction

In their 1983 paper “Real Business Cycles”, John Long and
Charles Plosser not only coined a phrase that every economist
would soon come to know, they also helped lay the foundations
of a new approach to modeling the business cycle. The particular
version of the stochastic optimal growth model used by Long and
Plosser in their study contains a notable feature: decisions regard-
ing labor input must be made before current production shocks
are realized. Subsequent research has carried on their agenda, but
mainly using a different timing, where those making labor input
decisions are permitted to observe the realized value of all shocks
that will affect current production before choosing labor input (see
Stokey et al., 1989 for an introductory treatment).

In empirical research, however, these production shocks are
never directly observable; they are typically computed as residu-
als given data on output, capital, and labor. The now conventional
shock-labor-output timing (the second timing discussed above)
assumes that decision makers can observe these residuals be-
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fore making labor input decisions. On the other hand, the labor-
shock-output timing adopted by Long and Plosser is consistent
with the view that decision makers have no more information
than macroeconomists, and can observe (or calculate) the resid-
uals only after observing output. Although the relative suitability
of the two approaches will vary across different modeling appli-
cations, it seems hard to deny that the Long-Plosser approach has
not received due attention in the literature.'

In this paper, our aim is to address fundamental aspects of the
stochastic optimal growth model with Long and Plosser’s timing,
and provide the underlying results necessary for further research.
We provide a detailed analysis of optimality and dynamics with
general functional forms. (Long and Plosser’s model specialized to
the case of log utility and Cobb-Douglas production, which results
in a linear law of motion for log output. This case is a useful bench-
mark, but is limited in the dynamics it is able to represent.) Our
first significant contribution in this paper is to provide conditions
under which a nontrivial stationary distribution for output exists,
and for when it is unique and globally stable. These results are valu-
able because the dynamics of the stochastic optimal growth model
with elastic labor and general functional forms are still largely un-
known, both for the traditional timing and the timing studied here.
This is remarkable, given that the dynamics in the inelastic labor

1 A number of papers working with the Long-Plosser timing can be found in
the literature. For a recent example see Balbus et al. (2012, p. 8). What is lacking,
however, is a foundational treatment like the one given in this paper.
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case were established so many years ago (Brock and Mirman, 1972;
Mirman, 1973), that all realistic applications of this class of models
allow labor to be endogenously supplied, and that almost all esti-
mation and calibration techniques depend at a fundamental level
on the existence of unique, nontrivial stationary solutions.>

We also establish geometric ergodicity of the output process,
and laws of large numbers and central limit theorems for functions
of output, investment and labor. These properties are fundamental
to almost all quantitative analysis, and the sample path limit
theorems are essential for simulation and estimation strategies.
Finally, as an additional contribution, we provide weak conditions
on the primitives of the model under which the Bellman equation
holds, optimal policies exist and are unique, continuous and (in
the case of savings and consumption) monotone. These conditions
permit shocks, utility and the state space to be unbounded. Our
approach to the dynamic programming problem is based on the
use of weighted-supremum norms.

Regarding these results, it should be noted that the Long-
Plosser timing used in this paper has some technical advantages
vis-a-vis the standard timing, particularly when proving unique-
ness and stability results for stationary equilibria. For example, the
different timing leads to different state variables, and this differ-
ence between state variables means that, in the Long-Plosser tim-
ing, the next-period production shock appears outside rather than
inside the optimal policy function. This makes it more feasible to
assess the impact of these shocks. Nonetheless, our paper should
provide a useful starting point for proving analogous results under
the standard timing.

1.1. Related literature

The stochastic optimal growth model analyzed by Brock and
Mirman (1972, 1973) motivated many subsequent studies aimed
at characterizing optimal investment. See, for example, Mirman
and Zilcha (1975), Razin and Yahav (1979), Donaldson and Mehra
(1983), Brock and Majumdar (1978), Stokey et al. (1989), Hopen-
hayn and Prescott (1992), Mirman (1973), Stachurski (2002), Zhang
(2007), Nishimura and Stachurski (2005), and Kamihigashi (2007).
In all of these papers, labor is assumed to be inelastically supplied.

The joint behavior of capital and labor in stochastic dy-
namic recursive economies with market distortions and exter-
nalities has been considered in Greenwood and Huffman (1995),
Coleman (1997), and Datta et al. (2002) under a set of conditions
related to monotonicity of the marginal utilities. Most recently,
under more general setting, Bosi and Le Van (2011), and Goenka
et al. (2012) have studied similar problems in deterministic Ram-
sey models with and without borrowing constraints, respectively.
In these papers, the focus is on the existence of competitive equi-
libria, and the problem of stability is largely untreated.

In the dynamic stochastic general equilibrium (DSGE) literature,
models usually are approximated using Taylor expansions or simi-
lar techniques (e.g. Kydland and Prescott, 1982, Hansen, 1985, and
Gali, 2008, Chapter 2). With this approach, the co-movements of
capital investment and labor supply around the steady states or
balanced growth path can be studied. However, it is not in general
true that stability of the linear approximation implies stability of
the original model (see Stachurski, 2007). Furthermore, the higher

2 That quantitative applications of the stochastic optimal growth model adopt
endogenous labor supply is not surprising. Not only does endogenous labor supply
add realism, it also permits modelers to address some of the most fundamental
questions of macroeconomics. Fluctuations in employment and the co-movement
of output, investment and labor supply are key phenomena of the business cycle.
Because the efficiency of the labor market is a crucial determinant of the efficiency
of the whole economy, labor-output dynamics have important implications for
policy makers.

order properties that are eliminated may be critical to understand-
ing actual dynamics (see Durlauf and Quah, 1999).

1.2. Structure of the paper

The rest of the paper is structured as follows. Section 2 sets up
the model and studies the social planner’s problem. Section 3 gives
conditions under which a nontrivial stationary distribution of out-
put exist. Section 4 presents results on stability and uniqueness,
and on sample path properties such as the law of large numbers
and the central limit theorem. Section 5 concludes. All proofs are
deferred to the appendices.

2. The model

In this section, we first define the model and solve the social
planner’s problem. Below we let R, := [0,00) and Ry, :=
(0, 00). For a generic function h, the symbols h}, h and h,f]f refer to
the first-order, second-order, and cross partial derivatives respec-
tively, with i, j indexing the arguments.

2.1. Model and assumptions

We begin with an elementary description of the basic model
suitable for optimization by a social planner. (There are no exter-
nalities or distortions in the model, and a discussion of decentral-
ization can be found in Long and Plosser, 1983.) Final output is
denoted y,, and is treated as a state variable. It is observed at the
start of period t and can be transformed one-for-one into current
physical investment k;. Investment and labor ¢; are choice vari-
ables, selected at the start of time t. A shock z;, is then revealed
and production takes place, yielding at the start of next period
Yer1 = Zey1 Fke, £r). (M)
The convention with subscripts is that a time t subscript indicates
that the variable lies in the time t information set and not the
t — 1 information set. In particular, z;, 1 is not previsible at t. The
function F represents the common production technology, and the
shock z;, 1 is aggregate. The value y;, ; that we refer to as “output”
is more correctly thought of as the sum of current output and cap-
ital net of depreciation.’

The information structure adopted in (1) differs from the con-
ventional specification y, = z;F(k;, £;), under which the decision
on labor input is made with the knowledge of the productivity
shock that affects current production. This is because we follow
Long and Plosser in assuming that labor supply is “risky”; in other
words, the planner does not know the productivity shock when
making decisions on labor input.

Our assumptions on the shock process are very standard:

Assumption 2.1. The shocks {z;} follow the Markov process on R
given by

11D
Zer1 = Y (2, e41), {ec} ~u, t=0,1,... (2)

The 1D sequence {e;} is defined on a probability space (§2, #, P)
and takes values in a measurable space (E, &) with common dis-
tribution w. The function ¥: Ry x E — Ry is jointly measurable,
andz — Y (z, e) is continuous and increasingon R, foreache € E.

We take IT to be the associated stochastic kernel (i.e., tran-
sition probability function), so that, in particular, I7(z,B) =
P{y (z, e;+1) € B} forall z € R, and Borel subsets B of R,..*

3 To be more explicit, we could take F (k, £) := F.(k, £)+(1—8)k, where F (k, £) is
current output and § parametrizes depreciation. It is easy to verify that if F. satisfies
the conditions of our assumptions below then so does F.

4 Some authors prefer to take the stochastic kernel /7 as the primitive. The two
approaches are equivalent, in the sense that every stochastic kernel on a completely
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