Abstract

We provide a proof of the existence of a quasi-equilibrium in an exchange economy with short selling when the preference relations of the investors are represented by a partial preorder. This setting encompasses the case of preference relations derived from a utility function. A second purpose of this paper is to compare the compactness condition used in this existence result with some compactness concepts found in the literature. © 2002 Elsevier Science B.V. All rights reserved.

JEL classification: C62; D50

Keywords: Partial preorder; Individually Rational Utility set; Asset short selling

1. Introduction

The main contribution of this paper is a proof of the existence of a quasi-equilibrium in an exchange economy with short selling when the preference relations of the investors are represented by a partial preorder. This setting encompasses the case of preference relations derived from a utility function. In a securities trading model, the possibility of short sales implies that the investment portfolios are not bounded from below. Thus, the standard assumptions made to ensure the existence of market clearing prices may not hold. In fact, an equilibrium may not exist. The equilibrium existence problem in such models has been studied in an asset market setting by Hart (1974), Hammond (1983), Page (1987) and in a general equilibrium setting by Werner (1987), Nielsen (1989), Page and Wooders (1996) and Dana et al. (1999), among others. Unlike our model, these authors rely on utility-representable preferences.

In an exchange economy model with finitely many securities, Hart (1974) considers a two-period economy in which trading in securities takes place in the first period and security
returns are determined in the second period. Investors are assumed to be exclusively inter-
rested in their wealth in the second period. Each investor has a von Neumann–Morgenstern
utility function \(u_i \) over portfolio return. The utility of portfolio \(x \) is then the expected utility
of its return, \(V_i(x) = E u_i(r \cdot x) \), where \(r \) is the random vector of returns per unit of assets. So
calculated, \(V_i \) can be thought of as the utility function of consumer \(i \) in a one-period exchange
economy \(\mathcal{E} = (X_i, V_i, e_i) \). This is the approach taken by Werner (1987) among others.

However, the expected utility is neither the only nor the most adequate formalization for
investors’ preferences. The two following examples illustrate the usefulness of our partial
preorder approach. First, typically, the return of a portfolio is described by a point in a
payoff space. This is a space of real-valued random variables on some underlying probability
measure space \((\Omega, \Sigma, P)\), such as, \(L_p(\Omega, \Sigma, P) \) for \(1 \leq p \leq +\infty \). In many instances, the
natural partial order of \(L_p \) can represent investors’ preferences on portfolios. This is the
point of view of Aliprantis et al. (1998). A second interpretation of the preorder consists of
an ordering of the real-valued bounded random variable space \(L_\infty(\Omega, \Sigma, P) \) with second
order stochastic dominance i.e., \(Y \preceq_{ssd} X \), if \(\int_{-\infty}^x P(X \leq t) dt \leq \int_{-\infty}^x P(Y \leq t) dt \),
\(\forall x \in \mathbb{R} \). This can be interpreted as \(X \) being (weakly) less risky than \(Y \), in accordance with
Rothshild and Stiglitz (1970) definition in the particular case where \(X \) and \(Y \) have the same
mean.

A first aim of the present paper is to extend several equilibrium existence results to the
case where the preference relations of the investors are represented by a partial preorder.
This case encompasses the earlier examples as well as the case of preference relations
derived from a utility function. As in the previous literature, we introduce a compactness
condition. The compactness with partial preorder (CPP) condition eliminates the problem
introduced by unboundedness of consumption sets and, therefore, implies the existence of
a competitive equilibrium. Following Gale and Mas-Colell (1975) and Shafer (1976), the
idea of the proof consists of considering a simultaneous optimization problem with a finite
number of \(m + 1 \) agents, where \(m \) is the number of investors, plus one market agent, who
determines the price system.

A second aim of this paper is to compare, within the framework adopted, the CPP con-
dition used in the existence result with other compactness concepts found in the literature.
Our result is implied by Hart (1974) and Page (1987), but is equivalent to Dana et al. (1999)
in the case of utility-representable preferences.

The paper is organized as follows. In Section 2, we describe the model. In Section 3,
we introduce the CPP condition and prove the main existence result (Theorem 3.1). In
Section 4, we extend some compactness notions used in the literature to the partially
preordered case. In Section 5, we restrict ourselves to the case of complete preordering
preferences represented by utility functions and discuss the relationship between the CPP
condition and the compactness of the utility set. Finally, the Appendix is devoted to some
of the proofs.

2. The model

We consider an exchange economy \(\mathcal{E} = (X_i, \preceq_i, e_i)_{i=1,\ldots,m} \) with positive finite numbers
\(\ell \) of assets and \(m \) of investors. For every \(i = 1, \ldots, m \), \(X_i \subset \mathbb{R}^\ell \) is the choice set of the
دریافت فوری
متن کامل مقاله
امکان دانلود نسخه تمام متن مقالات انگلیسی
امکان دانلود نسخه ترجمه شده مقالات
پذیرش سفارش ترجمه تخصصی
امکان جستجو در آرشیو جامعی از صدها موضوع و هزاران مقاله
امکان دانلود رایگان ۲ صفحه اول هر مقاله
امکان پرداخت اینترنتی با کلیه کارت های عضو شتاب
دانلود فوری مقاله پس از پرداخت آنلاین
پشتیبانی کامل خرید با بهره مندی از سیستم هوشمند رهگیری سفارشات