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a b s t r a c t

This note describes how the incomplete markets model with aggregate uncertainty in

Den Haan et al. [Comparison of solutions to the incomplete markets model with

aggregate uncertainty. Journal of Economic Dynamics and Control, this issue] is solved

using standard quadrature and projection methods. This is made possible by linking the

aggregate state variables to a parameterized density that describes the cross-sectional

distribution. A simulation procedure is used to find the best shape of the density within

the class of approximating densities considered. This note compares several simulation

procedures in which there is—as in the model—no cross-sectional sampling variation.

& 2009 Elsevier B.V. All rights reserved.

1. Introduction

This paper describes the algorithm used to solve the model with incomplete markets and aggregate risk of Den Haan et
al. (2009). The algorithm of Krusell and Smith (1998), the most popular algorithm to solve this type of model, consists of an
iterative procedure and in each iteration a simulation of the economy with the approximating solution is used to solve for
the law of motion of aggregate capital. The simulation procedure of Krusell and Smith (1998) has two types of sampling
variation. The first is due to using a finite instead of a continuum of agents. As shown below, this sampling variation can be
avoided. The sampling variation that is due to the aggregate shock, however, seems unavoidable. Using simulated data to
obtain numerical solutions has two disadvantages. First, by introducing sampling noise the policy functions themselves
become stochastic. This effect can be reduced by using long time series, but sampling noise disappears at a slow rate.
Second—and more importantly—the values of the state variables used to find the best fit for the aggregate law of motion
are endogenous and are typically clustered around their means. But accuracy can be improved by using values that are
more spread out.1 In particular, the numerical literature advocates the use of Chebyshev nodes to ensure uniform
convergence and the procedure used here allows for this efficient choice of grid points.
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The algorithm described here uses projection methods and can—in principle—solve the model without relying
on any simulation procedure. Using projection procedures to solve a model with a continuum of agents typically
requires a parameterization of the cross-sectional distribution as in Den Haan (1997).2 We improve on the
procedure proposed in Den Haan (1997) in the following way. If one parameterizes the cross-sectional distribution, then
all parameters of the density are state variables. For example, if one uses a Normal density then there are two
parameters, i.e., the mean and the variance, and thus two state variables.3 But note that using a Normal density has
implications for the higher-order moments. These implied higher-order moments may not be correct. For
example, a Normal density implies no skewness, but the model one tries to solve may have a skewed distribution. In
that case one could allow for more general approximating functions with more free parameters. The problem
of adding coefficients to the approximating density is that one also adds state variables. Our procedure uses an
approximation for the density that allows for more flexibility, but does not increase the number of state
variables.

The idea is the following. Suppose one starts with the Normal as the approximating cross-sectional density and uses the
mean and the variance as state variables. Using this approximating density one can obtain a numerical solution of the
model using standard projection methods and without any simulation. Now that one has obtained a numerical solution
one can ask the question whether the cross-sectional density is described accurately with a Normal density. To answer this
question one has to rely on a simulation. Suppose that after simulating a panel and calculating the higher-order
(unconditional) cross-sectional moments, one concludes that the Normal does not provide an accurate representation.
When using the algorithm of Den Haan (1997), one would use a higher-order approximation of the cross-sectional
distribution and increase the number of state variables.

But one can also modify the functional form of the cross-sectional distribution without adding state variables. This is the
approach followed here, that is, the information obtained from the simulation is used to modify the functional form of the
cross-sectional distribution. Thus, if the Normal is not accurate one would use at each point on the grid a density
that (i) implies values for the higher-order moments equal to the values found in the simulation and, of course, (ii) implies
values for the lower-order moments that are included as state variables. The algorithm iterates on this procedure until the
information provided by the simulation is consistent with the assumptions made about the shape of the cross-sectional
distribution. The philosophy that underlies our algorithm is similar to the one in Reiter (2009). The differences are mainly
in terms of implementation, which is less cumbersome for our algorithm.

Although we rely on a simulation procedure, it plays a much smaller role than in, for example, the algorithm of Krusell
and Smith (1998); it is only used to determine the shape of the density. The procedure to solve for the policy rules uses
standard projection techniques without a simulation step.

Algan et al. (2008) (AAD hereafter) propose a new procedure to simulate cross-sections with a continuum of agents. The
most common procedure to simulate models with a continuum of agents consists of using a finite number of agents and a
random number generator to draw the idiosyncratic shocks. Consequently, the results are subject to cross-sectional
sampling variation. Models with a continuum of agents do not have this property and most solution procedures are based
on this lack of sampling variation.4 AAD show that sampling variation can be substantial and that properties of the laws of
motion may be overlooked because of the presence of cross-sectional noise. In this note, we compare three procedures that
all avoid cross-sectional sampling variation.

2. Algorithm

This section provides an overview of the key ingredients of the algorithm.5

Projection method: The numerical solution of the incomplete markets model with aggregate uncertainty in Den Haan
et al. (2009) consists of a policy function k0ð�; k; a; s;CkÞ, where � is the (exogenous) individual employment status,6 k the
individual capital stock, a the exogenous aggregate state, s a set of variables that characterizes the cross-sectional joint
distribution of capital and employment status, and Ck the coefficients of the policy function. The variable s refers to the
beginning-of-period distribution after the new employment status has been observed.

The standard projection procedure to solve for Ck consists of the following three steps.

1. Construct a grid of the state variables.
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2 Den Haan and Rendahl (2009) show that aggregation without explicit distributional assumptions is possible when the individual policy functions

are linear in the coefficients. They implicitly obtain information about the distribution by approximating auxiliary policy rules.
3 As shown below, one can establish a mapping between the parameters of the approximating density and a set of moments even if more flexible

densities are used. Instead of using the parameters of the density, we always use moments as state variables.
4 For example, solution procedures typically specify that next period’s distribution is fully determined by the current distribution and aggregate

shocks.
5 A more in depth discussion can be found in AAD.
6 The value of � is equal to 0 when the agent is unemployed and equal to 1 when the agent is employed.
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