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An artificial neural network model was developed to correlate the relationship between the alloying ele-
ments (Al, V, Fe, O, and N) and heat treatment temperature (inputs) with the volume fractions of o and B
phases (outputs) in some o, near-o, and o + f titanium alloys. The individual and combined influences of
the composition and temperature on o and  phases were simulated through performing sensitivity anal-
ysis. A new method has been proposed to estimate the relative importance of the inputs on the outputs
for single phase o-Ti, near-a Ti, and o+ B Ti alloys. The average error of the model predictions for 35
unseen test data sets is 1.546%. The estimated behavior of volume fractions of o and  phases as a func-
tion of composition and temperature are in good agreement with the experimental knowledge.
Justification of the results from the metallurgical interpretation has been included.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The titanium alloys are garnering significant engineering
importance due to their high strength-to-weight ratio and excel-
lent corrosion resistance [1,2]. Generally, Ti alloys have different
volume fractions of o and B phases depending on the composition,
heat treatment, and interstitial content. The ratio of o and B phases
and their distribution determines the mechanical and thermal
properties. The o phase has HCP structure with limited slip system,
which results in low ductility, relatively high strength and excel-
lent creep resistance. In contrast,  phase has BCC structure with
moderate ductility and strength. The titanium alloys can acquire
a large variety of microstructures with different geometrical
arrangements of o and B phases. They can be classified into three
different categories: lamellar, equiaxed, or a mixture, i.e. bimodal.
The relationship between o and B phase volume fractions with the
composition and heat treatment temperature is very sensitive and
complex in nature.

Artificial neural networks (ANN) techniques applied in predict-
ing the various phenomenon of alloys due to their ability to learn
input-output relationships for the complex problems [3-6]. The
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most important feature is that ANN do not require specific equa-
tion forms. They only require sufficient meaningful input-output
data. The capability of ANN models as universal function approxi-
mators has been used to solve the problems in which the relation-
ship is unclear between the dependent and independent variables.
ANNSs have been successfully applied to numerous applications in
material science [7-10]. ANN models have been used in different
phenomenon such as prediction of flow stress of Ti600 alloy [11],
creep behavior of IMI 834 alloy [12], correlating microstructure
with properties [7,13] and B transus temperature [14,15].
However, the available literature is limited to predict various phe-
nomena of specific titanium alloy and the role of alloying elements
has not been reported quantitatively.

The primary objectives of the present study are: (i) to predict
the volume fractions of o and B phases for new alloys and temper-
atures, (ii) to calculate the effect of alloying elements and heat
treatment temperature on the volume fractions of o and B phases
individually as well as in combination of two or more inputs, and
(iii) to estimate the effect of composition and heat treatment tem-
perature on phase volume fractions quantitatively by calculating
index of relative importance of the input parameters. As ANN mod-
els have been designed using statistical techniques, hence the
results are discussed with respect to metallurgical perspective.
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2. Materials

The experimental measurements coming from the experiments
conducted in house [15-18] and from the literature [19-24]
belonging to seventeen titanium alloys at different quenching tem-
peratures has been used in the present study. The larger part of the
data sets in the present work are the o + B alloys; and the remain-
ing data are near-o and single phase o alloys. In order to examine
the phase volume fractions at high temperature, small sections
(20 mm x 10 mm x 10 mm) of each Ti alloy were soaked at vari-
ous temperatures for 30 min, followed immediately by water
quenching. Each specimen was slurry coated with Deltaglaze-151
to reduce the oxidation prior to heating to the test temperature.
The heat-treatment at 750, 815, 900, and 950 °C are primarily
selected, because they are common o+ hot working tempera-
tures for most of the two phase titanium alloys. The chemical com-
positions (Al, V, Fe, O, and N) and temperature are the inputs and
the corresponding two outputs are o and B phase volume fractions.
The statistics of the inputs and output parameters are presented in
the Table 1. All the variables were normalized between 0.1 and 0.9.
The normalization process is expressed quantitatively as follows:

(X — Xmin) x 0.8

+0.1
(Xmax - xmin)

Xn =

where x, is the normalized value of x; x,.x and X, are the maxi-
mum and the minimum values of x, respectively, in the entire data

Table 1

set. Once the best-trained network was found, all the transformed
data were put back into their original value by the following
equation:

o (Xn - O-l)(xmax - Xmin) .
X= 08 =+ Xmin

3. Modeling procedure

In the present study, the model was trained using a back prop-
agation algorithm and the sigmoid function was used as an activa-
tion function [25,26]. A detailed description of the back
propagation algorithm and training procedure has been reported
previously [26-28]. The training program and the graphical user
interface design of the present model was written in C and Java,
respectively.

The model consists of six neurons (Al, V, Fe, O, N, and heat treat-
ment temperature) in the input layer and two neurons (o and B
phase volume fractions) in the output layer (see Fig. 1). The neural
network training consists of adjusting the weights associated with
each connection between the neurons until the computed outputs
for each set of input data are as close as possible to the experimen-
tal output values. To determine the optimum architecture and to
find the confidence of ANN model, the data sets split into training
and testing datasets. The available 134 data sets were divided into
99 training data sets and 35 testing data sets. Appropriate

Statistics of alloying elements, heat treatment temperature (inputs) and volume fraction of o and B (outputs) used in the present model development.

Experimental data Input and output variables Minimum Maximum Mean Standard deviation
99 Training + 35 test data sets Al (%) 5.72 7 6.244 0.071
V (%) 1.5 5 3.948 0.071
Fe (%) 0.01 3.04 0.444 0.049
0O (%) 0.08 0.3 0.148 0.016
N (%) 0.003 0.02 0.007 0.000
Temperature (°C) 600 1000.62 861 132.158
o phase volume fraction (%) 100 52.7 42.002
B phase volume fraction (%) 100 47.3 42.002
Inputs
Hidden
Al
Vv Outputs
o Phase volume
fraction
Fe
(0}
B Phase volume
fraction
N
Temp.

Fig. 1. Schematic diagram of neural networks model representing the hidden layers in between the inputs and respective outputs.
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