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Adaptive patch-based mesh fitting for reverse engineering
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Abstract

In this paper, we propose a novel adaptive mesh fitting algorithm that fits a triangular model with G1 smoothly stitching bi-quintic Bézier
patches. Our algorithm first segments the input mesh into a set of quadrilateral patches, whose boundaries form a quadrangle mesh. For each
boundary of each quadrilateral patch, we construct a normal curve and a boundary-fitting curve, which fit the normal and position of its boundary
vertices respectively. By interpolating the normal and boundary-fitting curves of each quadrilateral patch with a Bézier patch, an initial G1

smoothly stitching Bézier patches is generated. We perform this patch-based fitting scheme in an adaptive fashion by recursively subdividing the
underlying quadrilateral into four sub-patches. The experimental results show that our algorithm achieves precision-ensured Bézier patches with
G1 continuity and meets the requirements of reverse engineering.
c© 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

In reverse engineering, the reconstructed triangular mesh
from a point cloud contains many vertices and needs to be
fitted with a smooth surface, e.g., smooth parametric patches.
The triangular mesh is first segmented into a sequence of
quadrilateral patches (see Fig. 1(a)), each of which is a
triangular mesh with four boundaries. A set of Bézier (B-
spline) patches are then built to fit the mesh vertices of these
quadrilateral patches with two requirements, i.e., the fitting
error of each patch and the G1 continuity between each pair
of neighboring patches. Satisfying these two requirements
simultaneously can be achieved with an adaptive fitting scheme.
That is, if the fitting error of one Bézier (B-spline) patch is
beyond a given tolerance, its corresponding quadrilateral patch
must be subdivided into four patches, which are further fitted
with four smoothly stitched Bézier (B-spline) patches. This
procedure proceeds until the fitting error of each Bézier (B-
spline) patch reaches a given tolerance.

The continuous stitching problem among neighboring
patches arises in interpolating a quadrangle curve mesh (see
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Fig. 1(b)) with parametric patches. Normally, the quadrangle
curve mesh is manually generated by users, for instance, during
designing a car body or ship hull. It consists of a set of
smooth curves, and has fewer vertices than the reconstructed
triangular mesh in reverse engineering. Here, the Bézier (B-
spline) patches that interpolate these smooth curves are only
required to be G1 continuously stitched. Adaptive fitting is
unnecessary in this case. Therefore, we will present the related
work in Section 1.1 mainly on the continuity problem.

In fact, there has been much work which cares about the
fitting error, but results in surfaces with weak continuity. For
instance, Milroy et al. [1] proposed a B-spline surface fitting
approach that leads to an uncomfortable visual appearance
due to the lack of smoothness. Eck and Hoppe [2] developed
an automatic method for fitting irregular meshes using bi-
cubic Bézier patches. Its resulting surface has ε–G1 continuity.
Although the algorithm proposed by Krishnamurthy and
Levoy [3] can fit B-spline surfaces with arbitrary topology,
there is little discussion on the continuity of the resulting B-
spline surfaces. Shi and Wang [4] introduced a local scheme for
constructing convergent G1 (not true G1) smooth bi-cubic B-
spline patches with interior single knots over a given arbitrary
quadrangular partition of a polygonal model. Note that all
these methods are incapable of adaptive fitting, and their fitting
error cannot be guaranteed. However, in reverse engineering,
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precision-ensured fitting is important to the downstream CAD
applications.

Till now, all work with adaptive fitting capability either
makes use of triangular Bézier–Bernstein patches [5,6], or
employs T-spline surfaces [7]. Whereas the quadrilateral Bézier
patch is more preferred because it satisfies the NURBS
standard, and is more popular than the triangular patch and T-
spline in reverse engineering.

In this paper, a new patch-by-patch scheme is proposed
to construct G1 continuously stitching Bézier patches for
the purpose of adaptively fitting the mesh vertices of
the quadrilateral patches with precision-ensured results. We
compute the normal vectors at the mesh vertices of the
triangular mesh by averaging the normal vectors of their
adjacent triangular patches. Along each boundary of each
quadrilateral patch, the normal vectors form a fence which
encloses and separates each quadrilateral patch (see Fig. 1(c)).
This is different from the quadrangle curve mesh (Fig. 1(b)).
We also generate a normal curve for each boundary by fitting
the normal vectors with a quadratic Bézier curve. The normal
curves make it possible to construct G1 continuously stitching
Bézier patches in a patchwise way. The key to the feasibility of
the patch-by-patch scheme lies in that each fitting Bézier patch
interpolates the normal curves on its four boundaries. Thus,
adjacent Bézier patches share the same normal vectors on the
common boundary, and they are tangent plane continuous (that
is, G1 continuous) along the boundary [8].

More importantly, the patch-by-patch scheme makes the
adaptive fitting feasible, because the G1 continuity of the patch
stitching on the T-conjunctions which are caused by recursive
subdivision, can be achieved by interpolating the normal curve
on each boundary of every sub-quadrilateral patch. Surely, the
fitting error is improved in an adaptive fashion.

The rest of this paper is organized as follows. In Section 1.1,
we briefly review the related work. The overview of our
approach is presented in Section 2. In Section 3, we introduce
how to construct the normal curve mesh and boundary-fitting
curve mesh. We present our patch-by-patch scheme, and show
how to construct initial Bézier patches over the quadrilateral
patches in Section 4. The adaptive fitting approach is described
in Section 5. The experimental results are given in Section 6.
Finally, we conclude the whole paper in Section 7.

1.1. Related work

Here, we briefly review the related work on interpolating a
quadrangle curve mesh using G1 smoothly stitching parametric
patches. In general, these methods pay more attention on
continuously stitching, and neglect the capability of ensuring
the fitting error. They can be roughly classified into two
categories according to the patch type: Bézier patch and B-
spline patch.

One pioneering work using Bézier patch was proposed
by van Wijk [9] for generating a smooth surface over a
non-rectangular mesh with bi-cubic patches. Shirman and
Séquin [10,11] employed five bi-cubic patches to interpolate
each quadrilateral in a mesh of cubic curves. Peters [12]

Fig. 1. (a) A triangular mesh is segmented into a set of quadrilateral patches.
(b) The quadrangle curve mesh formed by the boundaries of the quadrilateral
patches. (c) The normal curves enclose and separate all quadrilateral patches
like a fence.

proposed a local ε–G1 continuity scheme, to construct a
smooth spline surface using bi-quadratic and bi-cubic Bézier
patches. Later, Peters [13] constructed a G1 smooth bi-quartic
Bézier surface over a refined network of quadrilateral sub-
cells generated by the midpoint mesh refinement technique.
By subdividing each Bézier patch into nine small patches,
Ma and Peng [14] obtained a G1 smooth surface. Reif [15]
generated G1 smooth surfaces using bi-quadratic rectangular
Bézier patches over semi-regular meshes. Ye and Nowacki [16]
employed G1 smooth bi-quintic Bézier patches to interpolate
rectangular cubic curve meshes. Ye [17] also extended this
method for constructing G2 Bézier surfaces by interpolating a
given G2 quintic curve meshes.

In terms of B-spline patches, Peters [18] constructed G1

smooth bi-cubic B-spline patches with interior double knots
generated by Catmull-Clark subdivision. Shi and Wang [19]
developed a local processing scheme for constructing G1

smooth bi-cubic B-spline surfaces with at least two pairs of
interior double knots. Further, Shi et al. [20] improved this
method to construct G1 smooth bi-quartic B-spline patches
with one pair of interior double knots. More recently, Shi et al.
[21] proposed to constructs G1 smooth B-spline surfaces with
single interior knots over arbitrary topology. Another work by
Kruth and Kerstens [22] incorporates positional, tangential or
curvature continuity conditions with non-uniform rational B-
splines in the CAD modeling of free-form surfaces.

2. Overview

Suppose that there is an oriented triangular mesh M . The
normal vector at each vertex is computed by normalizing
the average of the normal vectors of its adjacent triangular
faces. The triangular mesh M is segmented into a set of
quadrilateral patches, which are triangular mesh patches with
four boundaries (Fig. 2(a)). The boundaries of all patches
compose a quadrangle curve mesh Q (see Fig. 1(b)).

The adaptive mesh fitting approach includes the following
steps:

1. Fit the normal vectors at the mesh vertices on each boundary
of the quadrangle curve mesh Q with a quadratic Bézier
curve, called a normal curve (see Fig. 2(b)).

2. Fit the mesh vertices on each boundary of the quadrangle
curve mesh Q with a quintic Bézier curve, called a
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