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Abstract: Nonlinear Model Predictive control (NMPC) is one of the advanced control strategies for
multi-dimensional nonlinear systems with constraints. With uncertainties present in the model, robust
NMPC strategies are proposed in order to counteract the effects of the uncertainties and have a safe
operation of the plant. Multi-stage NMPC offers a non-conservative alternative as it models the feedback
information explicitly in the problem formulation by means of a scenario tree. In order to be robust
to both the model uncertainties and the estimation error, we formulate a multi-stage output feedback
NMPC strategy by creating additional scenarios by sampling the innovations and use observer equations
to predict the future evolution of the plant. Since the observers such as the Extended Kalman Filter
(EKF) can be used to estimate the uncertain parameters along with the states, the output feedback
NMPC strategy is improved to be adaptive with respect to time varying uncertain parameters and the
performance of the controller is improved. We demonstrate the advantages of the proposed adaptive
scheme using a nonlinear Continuous Stirred Tank Reactor (CSTR) example.
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1. INTRODUCTION

As we progress in the 21st century, the industries are being
highly regulated owing to environmental and safety consider-
ations and as a result stringent constraints are being imposed
on the processes. The critical challenge for the industries is
then to increase the efficiency of the plant operation while all
process specifications are met. Advanced control techniques are
needed which can not only handle constraints but also improve
the overall efficiency of the plant. Nonlinear Model Predictive
control (NMPC) is one of the advanced techniques which can
address economic objectives while satisfying the process con-
straints.

In NMPC, we define the control task as an optimization prob-
lem with a certain objective and a set of constraints. The objec-
tive can be a simple tracking term or it can be an economic ob-
jective. Economic objectives can be maximization of a product,
minimization of time for the production, reducing the energy
consumption and increasing the profit of the company etc. For
the chosen objective and the given constraints, the behaviour
of the plant is predicted for a given time period (known as
prediction horizon) by solving the optimization problem and
the sequence of optimal control inputs are obtained. The control
input that was calculated for the first time step is then applied

* *The research leading to these results has received funding from the Euro-
pean Commission under grant agreement number 291458 (MOBOCON) and
from the Deutsche Forschungsgemeinschaft under grant agreement number EN
152/39-1.

to the plant and the optimization procedure is repeated online
at each sampling instant.

The performance of the controller depends on the accuracy of
the prediction and thus on how well the model represents the
reality. Different uncertainties can be part of a model in the
form of plant disturbances, parametric uncertainty, unmodelled
dynamics and errors in the initial conditions etc. The controller
must be robust to all the uncertainties in order to satisfy the
constraints and achieve an optimal operation of the plant. Multi-
stage NMPC is one of the robust NMPC strategies to tackle the
model uncertainties (see Lucia et al. (2013)). Min-max and tube
based are other well known strategies (see Scokaert and Mayne
(1998) and Mayne et al. (2011)). In multi-stage NMPC, the evo-
lutions of the plant for each realization of the uncertainties are
considered as different scenarios. In this approach, the feedback
information is taken explicitly into account in the prediction.
As the plant evolves in time, the control inputs in the future are
calculated for the state of the plant at those instants when the
measurement information is revealed. This fact is modelled in
the problem formulation of the multi-stage NMPC by consid-
ering the future control inputs can be different from each other
depending on the evolution of the different scenarios and thus
can act as recourse to counteract the effects of the uncertainties.
This makes the approach less-conservative compared to other
approaches. If the scenario tree is an exact representation of
the future uncertainties, multi-stage NMPC provides the opti-
mal solution under the given feedback information structure by
solving an open-loop optimization problem.

2405-8963 © 2015, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.
Peer review under responsibility of International Federation of Automatic Control.

10.1016/j.ifacol.2015.11.290



Sankaranarayanan Subramanian et al. / IFAC-PapersOnLine 48-23 (2015) 242-247 243

The presence of estimation error poses the interesting chal-
lenge of not only predicting the evolution of the plant under
uncertainty but also the evolution of the plant under the control
actions that may happen in the future as a result of (future)
estimation errors. Under the assumption that the system is ob-
servable and that the innovations sequence is bounded, an EKF
based multi-stage NMPC strategy was proposed in Subrama-
nian et al. (2014). In this paper, we aim at improving the per-
formance of the controller by reducing the conservativeness of
the approach further by including the information on estimated
parameters also in the problem formulation. The parametric
uncertainties are estimated online and adapted in the controller
in a systematic way. At each time step, the EKF is used to
estimate the state and the time varying uncertain parameters of
the plant. This information is modelled in the scenario tree with
the assumption that the parameter estimation error is bounded
and that an upper bound for the change of parameters between
the sampling times can be obtained.

2. STATE AND PARAMETER ESTIMATION USING THE
EXTENDED KALMAN FILTER

The EKEF is one of the widely used nonlinear filters for state
estimation. It consists of predictor and corrector steps. In the
predictor step, the nonlinear model of the system is used to
predict the state estimate of the system from the known initial
conditions (or the state estimate from the previous time instant)
and the applied control input. In the corrector step, the predicted
state estimate is then updated once the measurements are ob-
tained. The nonlinear model of the plant is given by

X = f (o1, w1, di1) + w1, (1)

Yk = h(x) + ry. (2)
Equation (1) describes the model of the plant, where x;, € R" is
the state of the plant, u; € R"™ is the control input, wy € R™ is
the process noise, d; € R" is the vector of uncertain parameters
(possibly time varying) at a given time step k and f : R™ X
R™ x R" — R™ is the model of the plant. Equation (2)
describes he measurement equation, where y, € R™ is the
measured output, r; € R™ is the measurement noise and # :
R™ — R is the measurement model. wy and r;, are assumed to
be white Gaussian noises with covariance matrices given by Oy
and Ry respectively. The dynamics of the uncertain parameters
dy can be given by

di = fa(e—1,ux—1,dx—1), 3)
where f; : R™ x R™ x R" — R is the model of the un-
certain parameter. If the variation in the uncertain time vary-
ing parameter is slow, the dynamics of the parameters can
be considered as dy = d;_ and the Kalman update improves
the estimation at each sampling time. In order to estimate the
unknown parameters, the dynamics of the parameters are added
to the model of the plant and the estimation scheme is applied
to the augmented model. The augmented model is given by

X8 = pAus (NS g ), fAS L RMT x RM — R, The
predlctor step of the EKF is then given by,
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A’,?“g " consists of the predicted state and the parameter estimate.

P, is the covariance matrix of the estimation error. (5) gives
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Fig. 1. Scenario tree representation of the uncertainty evolution
for multi-stage NMPC.

the one-step ahead prediction of the covariance matrix. The
measurement update is then performed via:

1 =2+ K — h(5), @)
Ky =P, CL(CP, CT +Ry) !, ®)
Py = (I - KiCy) P, 9

where the Kalman gain K gives the update to the predicted
estimate. The measurement equation is linearized and Cj is

obtained by Cy = = yi —h(£*¥7) is the innovations

oh
Ix | Aug
which are the new information used to update the predicted
estimate. (7) gives the state and the parameter estimate at the
given time step k which are then used to initialize the control
problem.

3. MULTI-STAGE OUTPUT FEEDBACK NMPC
3.1 Multi-stage NMPC

The multi-stage NMPC is a non-conservative robust NMPC
strategy (see Lucia et al. (2013)). In this method, the evolution
of the system is represented using a scenario tree as shown
in Fig. 1. The current state of the system forms the root node
of the scenario tree. Each branch denotes the evolution of the
plant for a possible realization of the uncertain parameters. The
important aspect of the approach is that the feedback informa-
tion is taken explicitly into account and that the decisions can
be different for the scenarios branching from different nodes.
This models the fact that the measurements are available at the
future and the future inputs can act as recourse to counteract the
effects of the uncertainties until that point in time. This makes
the method less conservative than others. If the uncertainties
are discrete valued, the problem formulation provides the op-
timal control policy. The stability properties of the method are
discussed in Lucia et al. (2014b). Rigorous guarantees for the
continuous valued uncertainties can be obtained by combining
the method with reachability analysis as shown in Lucia et al.
(2014c).

In the scenario tree, the decisions taken at every node must be
the same because the future realizations are not known. The
constraint which forces the inputs to be the same at a given
node is called the non-anticipativity constraint (e.g. in Fig. 1,

1_,2_ 2.1 _.2_ 3,
Ug = Uy = Uys U] = Uj = Uj;...).
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