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a b s t r a c t

A new adaptive inventory control strategy is developed by applying online adaptation in the framework
of passivity-based control. By using the system model and definition of the inventory, a feedback-
feedforward control structure is derived from the passivity theorem. The stability analysis and the
extension of the controller to a non-passive system are also given in this paper. This control strategy
is demonstrated in a transfer function example and an application to a pressure tank unit in a chemical
plant.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

The concept of passivity has played a key role of nonlinear con-
trol theory since it was formalized in 1970s [1]. Being related to
Lyapunov and L2 stability, the passivity theory provides a useful
tool for nonlinear system analysis [2]. An important conclusion
from passivity is that a strictly passive system with a negative
feedback of another passive system is stable [4]. Further more, the
degree of passivity can be quantified by the passivity indices for
both passive and non-passive systems. The shortage of passivity of a
system can be compensated by the excess of passivity of a feedback
controller, which motivated the passivity-based controller design
[4].

Passivity theory has not been applied in process control until
recent years. The notion of process system is first defined by con-
necting thermodynamics and passivity [5,6]. By using macroscopic
balance of inventories (such as total mass and energy) to construct
passive input-output pairs, an inventory control strategy is further
proposed based on the idea that the manipulated variables are cho-
sen so that the selected inventories follow their set points [7–9].
This control strategy has been applied to several control problem
examples such as drum boiler, ternary flash and reactor flow sheet
[7]. In industry, it was successfully applied to the temperature con-
trol problem of the float glass process for PPG company [9].

If there are unknown parameters in the process model, online
adaptation can be used in the passivity-based inventory control
frame [8]. In this article, the passivity-based adaptive inventory
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control is studied in both theory and applications, and the paper
is organized as follows. In the following section, the notion of a
passive system and the passivity theorem is summarized. The loop-
shifting technique to render a non-passive system passive is also
described. Then the adaptive feedforward and feedback controller
is derived from passivity theorem and the inventory control the-
ory. The Lyapunov stability analysis and extension to a non-passive
system by loop-shifting are also given in this section. Finally, the
control strategy is applied to a general transfer function example
and a pressure tank unit of a chemical plant and simulation results
are discussed.

2. Passive systems and the passivity theorem

In this section, let us review some of the basic definitions and
theorems for passive systems. We will then use the loop-shifting
technique to shift the passivity within the closed-loop to show how
the stability is guaranteed based on passivity.

Definition 1 (Linear Passive Systems [1]). A linear time-invariant
system �, with n × n transfer function matrix T(s), is passive if and
only if T(s) is Positive Real (PR), or equivalently,

1. T(s) is analytic in Re(s) > 0
2. T(jω) + T∗(jω) ≥ 0 for all frequency ω that jω is not a pole of T(s).

If there are poles p1, p2, . . ., pm of T(s) on the imaginary axis, they
are nonrepeated and the residue matrix at the poles lims→pi

(s −
pi)T(s) (i = 1, 2, . . ., n) is Hermitian and positive semidefinite.

System � is said to be strictly passive or S trictly Positive Real
(SPR) [3] if
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Fig. 1. Passivity theorem.

1. T(s) is analytic in Re(s) ≥ 0
2. T(jω) + T∗(jω) > 0 for ω ∈(− ∞ , + ∞ )

Definition 2 (Dissipative systems). System � with supply rate w(t)
is said to be dissipative if there exists a non-negative real func-
tion S(x) : X → R

+, called the storage function, such that, for all
t1 ≥ t0 ≥ 0, x0 ∈ X and u ∈ U,

S(x1) − S(x0) ≤
∫ t1

t0

w(t)dt, (1)

where x1 = �(t1, t0, x0, u) and R+ is a set of non-negative real num-
bers.

Definition 3 (Excess/shortage of passivity). Let H : u �→ y. System �
is said to be:

1. Input feedforward passive (IFP) if it is dissipative with respect
to supply rate w(u, y) = yT u − �uT u for some � ∈R, denoted as
IFP(�).

2. Output feedback passive (OFP) if it is dissipative with respect
to supply rate w(u, y) = yT u − �yT y for some � ∈R, denoted as
OFP(�).

A positive/negative value of � or � means that the system has
an excess/shortage of passivity.

Definition 4 (Passivity Index). The input feedforward passivity
index for a stable linear system G(s) is defined as

�F (G(s), ω)� 1
2

�min(G(jω) + G∗(jω)) (2)

where �min denotes the minimum eigenvalue.

For linear systems, the Passivity Theorem states that a feedback
system (as shown in Fig. 1) comprised of a passive system K(s) and
a strictly passive system G(s) is asymptotically stable.

If G(s) in Fig. 1 is not passive (�(G(s)) < 0), then there exists w(s)
such that G′(s) = G(s) + w(s) is passive, which means

�F (w(s), ω) + �F (G(s), ω) > 0 ∀ ω ∈R (3)

Figs. 1 and 2 are equivalent.

Fig. 2. Closed-loop modification.

Fig. 3. Loop shifting.

However, since we can find w(s) such that G′(s) = G(s) + w(s) is
strictly passive, we can shift the negative feedforward of G(s) to
become the positive feedback of K(s) as shown in Fig. 3.

Hence, with G′(s) being rendered strictly passive, we need to
make sure the controller K(s) with a positive feedback of w(s), i.e.,
K ′(s) = [1 − K(s)w(s)]−1K(s), is passive to guarantee the closed-loop
stability based on the Passivity Theorem. In other words, G is IFP(�)
where � < 0 while K is OFP(�) where � > 0 and � + � > 0.

3. Adaptive inventory control

Consider a finite-dimensional dynamic system S represented by

ẋ = f (x) + g(x, u, d), x(0) = x0 (4)

y = h(x) (5)

where x, u, d and y are the vectors of state variables, inputs and
disturbances respectively; f, g and h are C1 functions.

An inventory for system S is defined by an additive continuous
(C1) function Z : X → R+ where X is the state space, so that the
inventory of a system is equal to the sum of the inventories of its
subsystems. Examples include total internal energy U, volume V
and mass M (number of moles) of each components. From the con-
tinuity, the differential equality for the inventory vector Z can be
written as

dZ(x)
dt

= �(x, u, d) + p(x) (6)

where

�(x, u, d) = ∂Z(x)
∂x

g(x, u, d) (7)

p(x) = ∂Z(x)
∂x

f (x) (8)

where � is called the rate of supply, p is called the rate of production
[7].

It is often possible to write

�(x, u, d) + p(x) = u	0 + 
(x, d)T 	 (9)

where 
(x, d) is a vector which depends on observable data; 	0 is
a non-zero parameter and 	 is a vector of parameters which can be
estimated on-line. Then Eq. (6) becomes

dZ

dt
= u	0 + 
(x, d)T 	, 	0 /= 0 (10)

Let Z∗ denote the reference of Z, then Eq. (10) can be rewritten
as

d(Z∗ − Z)
dt

= dZ∗

dt
− u	0 − 
(x, d)T 	 (11)

It can be proved that the input and output pair

U = dZ∗

dt
− u	0 − 
(x, d)T 	 (12)

e = Z∗ − Z (13)
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