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a  b  s  t  r  a  c  t

This  paper  introduces  a 2-dimensional  conformal  transformation  scheme  for the  parameter  extraction  of
an  arbitrary  overhead  transmission  line  or underground  cable  in an  unbounded  lossy  space.  The  quasi-
magnetic  Helmholtz  equation  is solved  using  the  finite  element  method  (FEM).  A  modified  bilinear
transformation  is  employed  to transform  the  unbounded  domain  to a bounded  domain  that  is more
efficiently  handled  in  FEM  simulations.  Due  to  conformality  of the  transformation,  the  magnetic  stored
energy,  which  is  used  to calculate  the per-unit-length  inductance  matrix,  L, is  independent  from  the
mapping  factor  while  the  longitudinal  current  and  its corresponding  dissipated  energy,  which  is used  to
calculate  the  per-unit-length  resistance  matrix,  R,  are  functions  of the  mapping  factor.  Numerical  results
for an  overhead  transmission  line  and a buried  multiconductor  cable  are  compared  with  those  calculated
using  Carson’s  approximation  and  Wedepohl’s  formula  from  near  DC  to the  high  frequency  range.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Solution of unbounded field problems in the case of lossy and
nonhomogeneous media is of particular interest in the simulation
of multiconductor overhead transmission lines and buried power
cables. Attempts to solve the problem of a thin wire line over lossy
homogenous ground have resulted in analytically-based formula-
tions providing accurate answers at low frequencies [1–3] as well
as high frequencies [4].  Solution of the buried cable problem in
the case of lossy media, on the other hand, requires more effort
and approximate formulas are almost always used. Low frequency
methods, which include earth conduction effects, are widely used
in commercial power system simulation tools for the calculation of
per-unit-length resistance, R, and inductance, L, matrices of trans-
mission lines [5]. They do not, however, enable easy modeling of
arbitrary conductor geometries, such as sector-shaped cables, non-
homogenous earth configurations, or complicated cases when the
conductor is at the surface of the earth.

The finite element method (FEM) is a powerful tool for the com-
putation of arbitrary nonhomogeneous problems but, similar to
other domain based numerical methods, it suffers from the inabil-
ity to directly model infinite spaces. Generally, the infinite space
is truncated far from the system considered (as far as time and
hardware limitations permit) using various boundary conditions.
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In transmission line parameter extraction applications, the space
truncation may  produce unacceptable errors in the calculation of
R and L. Several techniques have been introduced to alleviate the
truncation problem. Following Bettes [6],  these techniques may
be categorized into five different groups: (1) truncation, (2) bal-
looning, (3) infinite or mapped elements, (4) transformation, and
(5) coupling FEM with an analytical method or other numerical
method. An extensive review of FEM open boundary techniques
for static and quasi-stationary electromagnetic field problems can
be found in [7].

The approach presented in this paper falls under the transfor-
mation group. Although spatial transformation is a well-known
mathematical concept which has been frequently used in the
solution of electromagnetic problems, it is still of interest to elec-
tromagnetic researchers [8–10]. A spatial transformation (mapping
scheme) converts the physical unbounded space to a finite domain
by a geometrical mapping method. The mapping scheme may  be
divided into two main categories; conformal and non-conformal
methods. Conformal mapping was  employed by Nath and Jamshidi
for the calculation of scalar field problems in two-dimensional
bounded domains [11]. Wong and Ciric used such transformations
to calculate axi-symmetric open boundary problems [12]. Confor-
mal  mapping has also been used for solving waveguide problems
[13]. The important feature of conformal transformation is that
the governing equation in static electric and magnetic problems
(Poisson’s equation) remains unchanged [14]. In most cases, the
post-processing formulations, which are usually used to calculate
the distributed parameters in the case of a transmission line, also
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remain unchanged [15]. In the case of solving the Helmholtz equa-
tion, modifications, to incorporate a mapping factor, are required
[16]. In some mapping schemes (not necessarily conformal), only
part of the physical domain, usually the unbounded exterior area
surrounding the region of interest, is mapped to a finite geometry,
such as a circle in the case of the Kelvin transformation [7] or a disk
[17,18].

Bilinear transformation, which is a special case of linear frac-
tional transformation [19], is a conformal mapping scheme which
has been employed for the solution of the Laplace equation by con-
verting a semi-open half-space problem to an equivalent closed
region [14]. This scheme maps the half-space, y > 0, to the interior
of a unit circle and is applicable to planar transmission lines over a
perfectly conducting infinite ground plane, such as microstrip.

In this paper, a generalization of bilinear transformation is
presented for full-space unbounded problems. Unbounded two-
dimensional space is divided to two half-spaces and each half-space
is mapped to a unit circular disk with coinciding boundaries.
This new mapping is then employed in the FEM simulation
of the two-dimensional quasi-stationary approximation of the
Helmholtz equation for the transmission line problem in a full-
space unbounded lossy media. In Section 2, the introduced
unbounded bilinear mapping scheme is described. The govern-
ing equation and post-processing formulation that is applied to
the magnetic energy relation for obtaining the transmission line
per-unit-length series impedance are derived in Sections 3 and 4,
respectively. Numerical simulation results are presented in Section
5, with comparison with results obtained using Carson’s approxi-
mation [1],  Wedepohl’s formula [5],  and analytical formulas.

2. Mapping scheme

The bilinear mapping, f(�), that transforms the upper half-space,
y > 0, in Cartesian coordinates, to a unit circle is given by

f (�) = 1 + j�

1 − j�
, (1)

where, � = x + jy represents a point on the complex plane. In order
to map  the lower half-space, y < 0, to a second unit circle using the
same scheme, the lower space is first mapped to the upper space
(y is replaced by −y), and the same mapping scheme is applied.
This is achieved by replacing � with �*, where * denotes complex
conjugate. Mathematically, the two mapped circles are co-incident,
but numerical solution of the problem requires the circles to be
separated. The two circles are translated and rotated such that the
y > 0 circle is adjacent to the y < 0 circle with the two  circles touch-
ing each other at the origin. Infinity points are located at the top
of the upper circle and the bottom of the lower circle. The inter-
face between the two upper and lower spaces, y = 0, is the common
boundary of the two regions and is mapped to the boundary of both
circles. The proposed mapping is achieved by using the following
mapping functions. For the upper half-space, we use

w1 = u1 + jv1 = f1(�) = −j [f (�) − 1] ; y ≥ 0, (2)

or,

u1(x, y) = 2x

(1 + y)2 + x2
,

v1(x, y) =
2
(

y2 + y + x2
)

(1 + y)2 + x2
,

and, for the lower half-space,

w2 = u2 + jv2 = f2(�) = j [f ∗(�∗) − 1] ; y ≤ 0, (3)

or,

u2(x, y) = 2x

(1 − y)2 + x2
,

v2(x, y) =
2
(
−y2 + y − x2

)
(1 − y)2 + x2

.

Here, w1 and w2 represent points in the upper and lower mapped
half-spaces in which ui and vi (i = 1, 2) are the real and imaginary
parts, respectively. The original space and the mapped space are
shown in Fig. 1.

Using a conformal mapping has the advantage that the value of a
scalar potential at each point in the original space is equal to that at
its corresponding point in the mapped space [19] and the governing
equations remain unchanged or only need to be modified using
a simple mapping factor. The procedure for obtaining a mapping
factor and necessary post processing integrals are summarized in
the Appendix A.

3. Formulation of the problem

In this paper, the quasi-stationary approximation of the
Helmholtz equation is considered. However, the method described
here is also valid for the general form of the Helmholtz equation.
The quasi-stationary approximation with longitudinal currents is
employed to calculate the per-unit-length resistance, R, and induc-
tance, L, matrices.

We begin with the differential form of the Maxwell’s equations
in the frequency domain (ejωt dependence)

∇ × E = −jωB, (4a)

∇ × H = �E + jωD,  (4b)

∇ · D = 0, (4c)

∇ · B = 0, (4d)

where � is the conductivity of medium. Electric and magnetic fields
can be written using the electric scalar potential, V, and the mag-
netic vector potential, A, as,

E = −∇V − jωA, (5a)

B  = ∇ × A. (5b)

Combining (4b) and (5b) with (5a) yields

∇ × 1
�

∇ × A + (� + jωε)(jωA + ∇V) = 0. (6)

Taking the divergence of (5a) and using Coulomb’s gauge (∇ · A = 0)
results in

∇2V = 0, (7)

which is simply the Laplace equation. Eqs. (6) and (7) are the gov-
erning equations of the problem.

Under the two-dimensional quasi-stationary assumption with
a uniform structure along the z axis, the per-unit-length resistance
and inductance are associated with the longitudinal component of
the current, i.e., z component. As a result, the z component of (6) is
considered in this paper only. As shown in [20], under the quasi-
stationary assumption, the electric scalar potential V varies linearly
with z. In other words, the z component of ∇V, ∂V/∂z, is a constant.
Here, we use �V  to represent the z component of ∇V which sim-
ply represents the excitation voltage per unit length. Under these
assumptions and neglecting the displacement current in conduc-
tors, to find the per-unit-length resistance and inductance, we  solve

1
�

∇2
t Az + (ω2ε − jω�)Az = ��V︸︷︷︸

Jex
z

, (8)
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