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Stochastic resonance (SR) has been proved to be an effective approach for weak signal detection. In this 
paper, an underdamped step-varying second-order SR (USSSR) method is proposed to further improve 
the output signal-to-noise ratio (SNR). In the method, by selecting a proper underdamped damping factor 
and a proper calculation step, the weak periodic signal, the noise and the potential can be matched with 
each other in the regime of second-order SR to generate an optimal dynamical system. The proposed 
method has three distinct merits as: 1) secondary filtering effect produces a low-noise output waveform; 
2) good band-pass filtering effect attenuates the multiscale noise that locates in high- and (or) low-
frequency domains; and 3) good anti-noise capability in detecting weak signal being submerged in 
heavy background noise. Numerical analysis and application verification are performed to confirm the 
effectiveness and efficiency of the proposed method in comparison with a traditional SR method.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Since proposed by Benzi et al. in 1981, stochastic resonance 
(SR) has become a hot research topic in the field of nonlinear 
science [1]. The most distinct merit of SR is that the weak con-
tinuous signal can be enhanced by exploiting the noise energy [2]. 
SR has been widely adopted in amplification of weak signals in 
different research fields. For instance, SR and optimal detection of 
pulse trains by threshold devices was introduced in Ref. [3]. Sig-
nal amplification in a nanomechanical Duffing resonator via SR 
was proposed in Ref. [4]. Signal amplification and filtering with 
a tristable SR cantilever was suggested in Ref. [5]. Nonlinear signal 
detection via SR was presented in Refs. [6,7]. Comparison study 
between the SR and the matched filters in detecting bipolar pulse 
signals was reported in Ref. [8]. Condition for noise induced en-
hancement in weak signal detection via SR was studied in Ref. [9]. 
Detection performance via SR in hypothesis-testing problems in 
the Neyman–Pearson framework was discussed in Refs. [10,11]. 
These studies indicate that SR phenomenon exists in different sig-
nal systems which contain weak signals and noise, and the weak 
signals can be enhanced and then detected by the assistance of 
proper noise.

The majority of SR theories are developed in the framework 
of small parameter (both signal frequency and signal amplitude 

* Corresponding author.
E-mail address: qbhe@ustc.edu.cn (Q. He).

should be far less than one) [12]. However, in practical signal 
processing applications, e.g., machine fault diagnosis, the small 
parameter limitation of the classical SR is hardly satisfied, and 
additionally, the engineering signals always present the charac-
teristics of nonlinearity and nonstationarity. Hence, to make the 
classical SR suitable for addressing the large parameter signals, a 
lot of modified and optimized strategies have been proposed, such 
as re-scaling frequency SR [13], adaptive step-changed SR [14], 
frequency-shifted and re-scaling SR [15], multiscale noise tuning 
SR [16] and multi-scale bistable SR array [17], etc. These stud-
ies are realized by tuning the signal structure and (or) the system 
parameters to cope with the large parameter signal, and these ef-
forts have effectively promoted the SR-based weak signal detection 
techniques in the applications of practical engineering signal pro-
cessing.

However, most of engineering signal processing methods via 
SR principle are based on the simplest first-order overdamped SR 
models, i.e., the system inertia is ignored and the system damp-
ing effect is regarded as insignificant (and hence the damping 
factor is normalized for simplicity). In fact, the SR output signal 
can be seen as a particle trajectory induced by particle oscillation 
within a potential under the synthetic forces from the weak sig-
nal and the noise [18]. From this perspective, the system inertia 
and the system damping factor will have effects on SR realization. 
Considering the system inertia means that the SR model is second-
order, and actually, the second-order SR is beneficial to obtain a 
low-noise SR output signal as the SR procedure can be regarded 
as a specific signal filtering process (i.e., second-order SR means
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secondary filtering and hence produces a cleaner filtered signal 
than first-order SR) [19]. Furthermore, several studies indicate that 
the underdamped damping factor also affects the efficiency of par-
ticle oscillation in the potential and finally affects the SR perfor-
mance [20–25]. Thus, considering a second-order SR model with 
an underdamped damping factor provides a possibility in improv-
ing the SR-based weak signal detection effect.

Motivated by the aforementioned analysis, this study focuses 
on enhancement of weak signal detection by combining a system 
parameter tuning method (via changing calculation step [14]) and 
an underdamped second-order SR model. This proposed method, 
called underdamped step-varying second-order SR (USSSR), is re-
alized by selecting a proper calculation step and a proper un-
derdamped damping factor in the framework of second-order SR. 
These two optimal parameters make the system, the driving sig-
nal and the noise be matched with each other, and thus the weak 
signal can be extracted from the background noise to an extreme 
and finally the optimal output signal can be obtained. The USSSR 
method has three distinct merits as: 1) secondary filtering effect 
produces a low-noise output waveform; 2) good band-pass filter-
ing effect attenuates the multiscale noise that locates in high- and 
(or) low-frequency domains; and 3) good anti-noise capability in 
detecting weak signal being submerged in heavy background noise. 
Hence, the proposed method is expected to be extensively used in 
weak signal detection, especially for signals with large parameters 
and (or) being subjected to multiscale heavy noise interference.

The rest of this paper is organized as follows. Section 2 pro-
vides the theoretical background of the proposed USSSR method 
and introduces the weak signal detection strategy based on the 
USSSR method. Section 3 performs simulation analysis to evaluate 
the USSSR method in comparison with a traditional SR method. 
Section 4 verifies the practicability of the proposed method by 
analyzing a set of defective bearing signals and provides further 
discussions. Section 5 summarizes this paper.

2. USSSR

2.1. Basic model

The basis of classical bistable SR phenomenon can be described 
as: a particle is driven by a periodic signal and the random noise 
in a bistable potential which consists of two potential wells and 
one potential barrier, and the periodic oscillation can be enhanced 
by the assistance of proper noise. Such a phenomenon can be illus-
trated with a governing equation by considering both the system 
inertia and the system damping factor as below:

d2x

dt2
= −dU (x)

dx
− γ

dx

dt
+ S(t) + N(t) (1)

where N(t) = √
2Dξ(t) with 〈N(t), N(t + τ )〉 = 2Dδ(t) being the 

noise item, in which D is the noise intensity and ξ(t) represents 
an additive Gaussian white noise (AGWN) with zero mean and unit 
variance. S(t) = A cos(Ωt + φ) is a periodic signal, in which A is 
the amplitude, Ω = 2π fd with fd being the driving frequency, and 
φ is the phase. γ represents the system damping factor. U (x) is a 
reflection-symmetric quartic potential as written below:

U (x) = −1

2
ax2 + 1

4
bx4 (2)

in which a and b denote the barrier parameters of the bistable 
potential with positive real value. Substitute Eq. (2) into Eq. (1), 
then we can get the following equation:

d2x

dt2
= ax − bx3 − γ

dx

dt
+ A cos(2π fdt + ϕ) + √

2Dξ(t) (3)

Fig. 1. The system model of the underdamped second-order SR.

The system model corresponding to Eq. (3) can be illustrated in 
Fig. 1, where it can be seen that the calculation of SR output x(t)
is equivalent to a secondary integration process and also equivalent 
to a secondary filtering process.

2.2. SNR analysis

Subsequently, the effect of second-order SR for enhancing the 
weak signal by exploiting the noise energy within the regime of 
small parameter is discussed. For simplicity, we set γ = 0, φ = 0
and mathematically let dx

dt = y, then Eq. (3) can be separated into 
two first-order differential equations as:

dx

dt
= y

dy

dt
= ax − bx3 − γ y + A cos(Ωt) + √

2Dξ(t) (4)

Next, let A = 0, D = 0, dx
dt = 0, dy

dt = 0, then three singular points 
((x+, y+) = (

√
(a/b), 0), (x0, y0) = (0, 0), (x−, y−) = (−√

(a/b), 0))

of the bistable potential can be obtained. Linearize Eq. (4) at sin-
gular points (x+, y+) and (x−, y−) then obtain the linearization 
matrix [ 0 1

−2a 0
], and the corresponding eigenvalues can be calcu-

lated to be β1,2 = ±√−2a. Analogously, linearize Eq. (4) at singu-
lar point (x0, y0) then obtain the linearization matrix [ 0 1

a 0
] and the 

corresponding eigenvalues λ1,2 = ±√
a [19]. Obviously, the singu-

lar point (x0, y0) is an unstable saddle point as λ1 > 0 and λ2 < 0, 
and the stable and unstable manifolds at (x0, y0) can be formed 
by the stable and unstable orbits that cross the saddle point, re-
spectively. The stable manifold forms two boundaries of the sta-
ble attraction domains and the unstable manifold connects the 
three singular points. Subsequently, the probability density func-
tion ρ(x, y, t) of the particle motion can be deduced by consulting 
the Fokker–Planck equation as follows [26]:

∂

∂t
ρ(x, y, t) = − ∂

∂x

[
yρ(x, y, t)

]
− ∂

∂ y

[(
ax − bx3 + A cosΩt

)
ρ(x, y, t)

]
+ D

(
∂

∂x2
+ ∂

∂ y2

)
ρ(x, y, t) (5)

In addition, the quasi-steady-state distribution function ρst(x, y, t)
corresponding to Eq. (5) can be further obtained based on the adi-
abatic elimination theory as [12,27]:

ρst(x, y, t) = N̄ exp

[
− Ũ (x, y, t)

D

]
(6)

in which N̄ represents the normalization constant, and Ũ (x, y, t) is 
the generalized potential function that can be obtained by utilizing 
the small parameter expansions method as:

Ũ (x, y, t) = 1

2
y2 − a

2
x2 + b

4
x4 − xA cos(Ωt) (7)
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