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a b s t r a c t

Wind speed as well as the power output of wind turbine generators (WTGs) have high correlations and
may not be normally distributed. In this paper, the method of Zhao’s point estimate method (PEM) com-
bined with Nataf transformation was applied into correlated probabilistic load flow (PLF) calculation. This
method can deal with correlated input random variables (RVs) with normal or non-normal probability
distributions. Instead of joint probability density functions (PDFs) of multivariate RVs, this method only
requires data of the marginal distribution function of each input RV and their correlation coefficients. The
effectiveness of the proposed method is demonstrated by the numerical tests on IEEE 14-bus and the IEEE
118-bus systems. Besides, relative average errors compared with correlated Monte Carlo Simulation
(CMCS) are analyzed.

� 2014 Elsevier Ltd. All rights reserved.

Introduction

Wind power is one of the most important renewable energy
resources. Wind turbine generators (WTGs) have seen considerable
and growing worldwide developments during the past few dec-
ades. Increased wind power penetration brings about considerable
challenges for power system operation and planning. The output of
WTGs may fluctuate severely, and the forecasting errors are signif-
icant. Furthermore, the geographical location of wind farms (WFs),
as well as their dependence on the wind speed, must be taken into
consideration for power system operation schedule and network
planning.

Probabilistic load flow (PLF) is an effective tool for power system
analysis since it allows uncertain variables to be taken into account.
The purpose of PLF is to obtain the probability density functions
(PDFs) of the output variables considering the uncertainty of the
input variables. The concept of PLF was first established by
Borkowska [1]. These methods can be classified into three catego-
ries: simulation methods, analytical methods, and approximation
methods. Simulation methods refer to Monte Carlo Simulation
(MCS) models [2–4], where a large number of input variable sam-
ples are stochastically generated and, for each set of samples, a

deterministic load flow calculation is performed. MCS is typically
time-consuming, although it is possible to achieve results with a
high degree of accuracy. A number of sampling techniques have
been established to decrease the computational expense of MCS
methods, including Latin hypercube sampling (LHS) [5,6], Latin
supercube sampling [7], and importance sampling [8,9]. However,
issues with computational expenses remain, and MCS methods
are still used as the benchmark for other methods. Analytical
methods are typically far less computationally expensive. Most
analytical approaches to PLF are based on linearized [10] or
multi-linearized [11] load-flow equations. The most commonly
used analytical methods are the cumulant method [12] and the
convolution method [13]. The cumulant combined with Gram–
Charlier expansions has been applied to PLF; the resulting cumula-
tive distribution curves of output random variables (RVs) are given
in [12]. Discrete frequency domain convolution can also be used to
obtain PLF solutions [13]. Alternatively, approximate methods are
effective in reducing the computational expense of PLF problems
compared with MCS. The main techniques in this category are the
point estimate method (PEM) [14,15] and first-order second-
moment method [16]. These methods approximate the statistical
properties of the output variables. Other methods include the max-
imum entropy method with Gram–Charlier expansion, proposed
for PLF applications in 2013 [17].

The methods discussed above do not consider the correlations
of the input RVs. However, when correlations are taken into
account, the solution to the PLF problem becomes more compli-
cated. In the correlated MCS (CMCS) method, the most important
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issue is to obtain a large number of correlated samples for each
input RV. If the joint PDFs of multivariate RVs are known, then
the corresponding samples can be achieved by random sampling.
However, since the joint PDFs of multivariate RVs are difficult to
obtain in practice, some probability information must be ignored.
Most sampling techniques depend on the marginal PDF of each
RV, as well as their correlation coefficients. Orthogonal transforma-
tion can be used to transform RVs from correlated normal space to
an independent normal one. However, for multivariate correlated
non-normal RVs, orthogonal transformation will result in signifi-
cant errors. Liu used Cholesky decomposition and Nataf transfor-
mation to achieve mapping from correlated non-normal space to
an independent standard normal space [18]. The sampling tech-
niques combining Cholesky decomposition with Nataf transforma-
tion to handle correlated non-normal RVs are generally considered
to be favorable. LHS can be used to generate samples of correlated
non-normal RVs, and hence reduce the computational expense
[19]. In the work reported here, a CMCS-based PLF model, in which
Liu’s technique [18] is adopted, is used as a benchmark tool for
other approaches.

Neither the cumulant method nor the convolution method is
inherently suitable for handling correlated RVs. Joint cumulants
can be derived from joint PDFs of input RVs [20], and an orthogonal
transformation has been used in the cumulants calculation to
account for correlated input RVs [21].

PEM is widely used in power system PLF evaluation for the fol-
lowing reasons: linearization of the load flow equations is not
required and it is computationally efficient. The most commonly
used PEM is based on Hong’s work [22]. However, this approach
cannot handle correlated input RVs inherently. Therefore, some

modifications to the original method are required. Harr combined
Hong’s PEM with orthogonal transformations to deal with correla-
tions [23], and Morales applied Harr’s idea to PLF study [24]. The
unscented transform (UT) [25] was applied to power system PLF
calculations. However, probability information higher than second
order cannot be achieved. Other approaches, including Gaussian
mixture models [26] and kernel estimators [27], have also been
used to model correlated non-normal distribution functions in
PLF study.

The main contribution of the work reported here is to apply the
Zhao’s PEM [28] accompanying Nataf transformation to power sys-
tem correlated PLF evaluation. In contrast to the Hong’s commonly
used PEM formulism, Zhao’s PEM can inherently handle the corre-
lations in RVs [29,30]. Zhao’s original PEM has been applied to
power system PLF evaluations in [31]. However, the joint PDFs of
the input RVs must be known in advance, which is not always prac-
tical. Here, the Rosenblatt transformation used in Zhao’s PEM is
replaced by the Nataf transformation, which only requires data
for the marginal distribution function of each input RV and the cor-
relation coefficients. The Nataf transformation is more practical
than the Rosenblatt transformation and more accurate than
orthogonal transformation when dealing with correlated non-nor-
mal RVs.

The remainder of this paper is organized as follows. Sec-
tion ‘Uncertainty modeling’ describes the uncertainty models of
load and wind power output. Section ‘Zhao’s PEM based on Nataf
transformation’ illustrates the method of Zhao’s point estimate
method and Nataf transformation. Two case studies are introduced
in Section ‘Discussion’. The modified IEEE 14-bus test system is
used to demonstrate the accuracy of the proposed method while

Nomenclature

a index for month
b index for day in one month
h index for wind speed sample on one day
H number of samples on one day
rij

a�b wind speed correlation coefficient on day b of month a
between wind farm i and j

v i
a�b�h wind speed measurement of sample h on day b of

month a in wind farm i
v j

a�b�h wind speed measurement of sample h on day b of
month a in wind farm j

�v i
a�b wind speed mean value on day b of month a in wind

farm i
�v j

a�b wind speed mean value on day b of month a in wind
farm j

vin cut-in speed
vout cut-out speed
vrate rating speed
Prate rating wind power
Pw WTG’s output
L1 independent standard normal space
L2 correlated standard normal space
L3 desired sample space
n number of random variables
X output random vector in PLF
Y input random vector in PLF
Z random vector in space L1

W random vector in space L2

CY correlation coefficient matrix of Y
CW correlation coefficient matrix of W
SY sample matrix of Y
SZ sample matrix of Z

SW sample matrix of W
U cumulate density function (CDF) of standard normal

variable
Fi CDF of input variable yi

N�1 inverse Nataf transformation
m index for estimating point of each random variable
pm weighting coefficient for estimating point m

lVi
CMCS voltage mean value for bus i using CMCS

lVi
PEM voltage mean value for bus i using PEM

rVi
CMCS voltage standard deviation for bus i using CMCS

rVi
PEM voltage standard deviation for bus i using PEM

lPi
CMCS branch power mean value for line i using CMCS

lPi
PEM branch power mean value for line i using PEM

rPi
CMCS branch power standard deviation for line i using CMCS

rPi
PEM branch power standard deviation for line i using PEM

eVi
l relative error of voltage mean value for bus i

eVi
r relative error of voltage standard deviation for bus i

ePi
l relative error of branch power mean value for line i

ePi
r relative error of branch power standard deviation for

line i
�eV
l average relative error of buses voltages’ mean value

�eV
r average relative error of buses voltages’ standard

deviation
�eP
l average relative error of branches power’ mean value

�eP
r average relative error of branches power’ standard

deviation
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