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a b s t r a c t 

Rigidity theory enables us to specify the conditions of unique localizability in the coop- 

erative localization problem of wireless sensor networks. This paper presents a combi- 

natorial rigidity approach to measure (i) generic rigidity and (ii) generalized redundant 

rigidity properties of graph structures through graph invariants for the localization prob- 

lem in wireless sensor networks. We define the rigidity index as a graph invariant based 

on independent set of edges. It has a value between 0 and 1, and it indicates how close 

we are to rigidity. Redundant rigidity is required for global rigidity, which is associated 

with unique realization of graphs. Moreover, redundant rigidity also provides rigidity ro- 

bustness in networked systems against structural changes, such as link losses. Here, we 

give a broader definition of redundant edge that we call the “generalized redundant edge.”

This definition of redundancy is valid for both rigid and non-rigid graphs. Next, we define 

the redundancy index as a graph invariant based on generalized redundant edges. It also 

has a value between 0 and 1, and it indicates the percentage of redundancy in a graph. 

These two indices allow us to explore the transition from non-rigidity to rigidity and the 

transition from rigidity to redundant rigidity. Examples on graphs are provided to demon- 

strate this approach. From a sensor network point of view, these two indices enable us 

to evaluate the effects of sensing radii of sensors on the rigidity properties of networks, 

which in turn, allow us to examine the localizability of sensor networks. We evaluate the 

required changes in sensing radii for localizability by means of the rigidity index and the 

redundancy index using random geometric graphs and clustered graphs in simulations. 

© 2016 Elsevier B.V. All rights reserved. 

1. Introduction 

Localization is an essential service for many applica- 

tions of wireless sensor networks. A wireless sensor net- 

work consists of a small number of anchors (reference 

nodes) and a large number of small, cheap ordinary nodes 
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(non-anchors). Anchors have a priori knowledge of their 

own positions, e.g., GPS, and ordinary nodes have no prior 

knowledge of their locations. If ordinary nodes were ca- 

pable making measurements to multiple anchors, they 

could determine their positions. However, several ordinary 

nodes cannot directly communicate with anchors because 

of power limitations or signal blockage. One feature of 

wireless sensor networks is the cooperative effort of sensor 

nodes [1] . A recent paradigm is cooperative localization, in 

which ordinary nodes help each other to determine their 

locations [2,3] . In cooperative localization, ordinary nodes 

not only make measurements with anchors, but also they 
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make measurements with other ordinary nodes. The types 

of measurements usually include distance estimates and/or 

angle estimates [4] . 

The set of ordinary nodes is uniquely localizable if there 

is a unique set of positions satisfying the conditions re- 

sulting from measurements. Note that this candidate set of 

positions is subject to the trivial degrees of freedom in d - 

space ( d = 2 , 3 ). For example, in 2-space, a framework with 

at least two vertices always has three trivial degrees of 

freedom generated by two translations and one rotation. 

Unique solvability of the cooperative localization problem 

is characterized by the results from “rigidity theory.” Re- 

dundant rigidity is required for global rigidity, which is as- 

sociated with unique realization of graphs. Use of rigid- 

ity theory in localization is well described in the literature 

[5–11] . More details will be given in Section 2 . 

Recent works introducing the rigidity theory into for- 

mation control has also provided provably correct meth- 

ods to model and analyze the ad hoc network topologies 

within robotic teams [12–16] . For example, rigidity theory 

provides us tools for formation control using relative dis- 

tance measurements instead of relative position measure- 

ments. Moreover, rigidity is necessary to estimate relative 

positions using only relative distance measurements [12] . 

Quantitative measures of rigidity have been proposed 

by researchers recently. Jacobs et al. [17] provided a mea- 

sure of rigidity within the context of microstructures of 

proteins, and their approach is based on chemical bonds. 

Zhu and Hu [18] studied quantitative measure of formation 

rigidity using stiffness matrix. Zelazo et al. [12] introduced 

the rigidity eigenvalue based on symmetric rigidity ma- 

trix. The latter two studies employed rigidity based matri- 

ces and studied the properties of those matrices to explore 

the rigidity properties of networks. Preliminary results on 

measures of redundant rigidity based on only rigid graphs, 

without consideration of non-rigid graphs, were provided 

in [19] . 

In this paper, first we provide a measure of “generic 

rigidity” for both rigid and non-rigid graphs. Then the con- 

cept of generalized redundancy is introduced, which allows 

us to provide a measure of “generalized redundancy” for 

both rigid and non-rigid graphs. Our approach is based on 

the combinatorial characterizations of rigidity and redun- 

dancy. Specifically, the main contributions of this work are: 

(a) the translation of edge distribution in a network graph 

to that of a rigidity measure that we term the “rigidity in- 

dex,” (b) the translation of the generalized redundancy of 

edge distribution in a network graph to that of a redun- 

dancy measure on network rigidity that we term the “re- 

dundancy index.”

From a graph theory point of view, the benefits of these 

measures are as follows: they permit us (i) to quantify the 

distribution of edges in a graph in terms of rigidity and re- 

dundant rigidity, (ii) to compare various graphs for rigidity 

in terms of the distribution of their redundant and non- 

redundant edges. 

From a sensor network point of view, these two mea- 

sures enable us to evaluate the effects of sensing radii 

of sensors on the rigidity and redundancy properties of 

networks, which in turn allows us to examine the local- 

izability of sensor network graphs. In particular, we are 

interested in the following questions: (i) how much change 

in sensing radii do we need to reach from non-rigidity to 

rigidity, and to reach from rigidity to redundant rigidity in 

random geometric graphs? (ii) Given that redundant rigid- 

ity is associated with unique localizability, is redundant 

rigidity a heavy burden on the network once rigidity is 

achieved? We provide answers to these questions in this 

paper. 

The localization process often needs to be repeated in 

mobile wireless sensor networks. Mobility brings the pos- 

sibility of the loss of links, which enforces to have not only 

localizable network structures but also structures which 

remain localizable after the loss of links in the network. 

Since redundancy plays a role in robustness, redundancy 

measure also helps us to evaluate robustness to link losses. 

The structure of the paper is as follows. We give prelim- 

inaries on rigidity in Section 2 . Main results on the rigidity 

index, the redundancy index and the corresponding com- 

plexity analysis are provided in Section 3 . Examples to il- 

lustrate those indices on graphs are presented in Section 4 . 

Applications of these two indices in sensor network sim- 

ulations are demonstrated in Section 5 . Finally, the pa- 

per ends with a conclusion and some outlook on future 

directions in Section 6 . 

2. Rigidity 

First we provide below some background on rigidity, re- 

dundant rigidity and global rigidity. We refer the reader to 

[20–23] and the references therein for more details. 

2.1. Rigid frameworks and the rigidity matrix 

We model a network by a finite graph G = (V, E) . All 

graphs considered are finite without loops and multiple 

edges. Nodes of the network correspond to the vertices 

of G , and for every link in the network there is an edge 

joining the corresponding vertices of the graph. A frame- 

work G ( p ) is a graph G = (V, E) and a plane configura- 

tion p : V → R 2 . Two frameworks G ( p ) and G ( q ) are equiv- 

alent if || p(v i ) − p(v j ) || = || q (v i ) − q (v j ) || holds whenever 

v i v j corresponds to an edge of G , where ‖ . ‖ denotes the 

distance. G ( p ) and G ( q ) are congruent if for any two ver- 

tices v i , v j ∈ V , || p(v i ) − p(v j ) || = || q (v i ) − q (v j ) || holds. A 

framework G ( p ) in R 2 is rigid if there is an ε > 0 such that 

for any other configuration q in R 2 , where || p(v ) − q (v ) || < 

ε for all v in V and G ( p ) is equivalent to G ( q ), then p is 

congruent to q . Intuitively, we may consider the rigidity of 

bar-joint frameworks. Here, bars correspond to edges, and 

joints correspond to vertices. A bar-joint framework is rigid 

if it has only trivial deformations, e.g., translations and 

rotations. 

The rigidity matrix R ( G , p ) of a framework G ( p ) is the 

| E | × 2| V | matrix, whose rows correspond to the edges 

and whose columns correspond to the coordinates of the 

vertices, where |.| denotes the cardinality of a set. If e = 

v i v j ∈ E, then the entry in the row e and the column v i 
is p(v i ) − p(v j ) , the entry in the row e and the column 

v j is p(v j ) − p(v i ) , and the other entries in the row e 

are zeros. If e = v i v j is not in E , then the entire row e is 

zeros. A framework ( G , p ) is called infinitesimally rigid if 
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