
Journal of Systems Architecture 63 (2016) 16–32

Contents lists available at ScienceDirect

Journal of Systems Architecture

journal homepage: www.elsevier.com/locate/sysarc

A safe-by-design programming language for wireless sensor networks

Luís Lopes a,∗, Francisco Martins b

a CRACS/INESC-TEC & Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 1021, 4169-007 Porto, Portugal
b LASIGE & Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal

a r t i c l e i n f o

Article history:

Received 29 November 2013

Revised 17 January 2016

Accepted 18 January 2016

Available online 28 January 2016

Keywords:

Programming language

Compiler

Virtual machine

Type safety

Wireless sensor network

a b s t r a c t

Wireless sensor networks are notoriously difficult to program and debug. This fact not only stems from

the nature of the hardware, but also from the current approaches for developing programming languages

and runtime systems for these platforms. In particular, current systems do not place enough stress on

providing formal descriptions of the language and its runtime system, and on proving static properties,

like type-safety and soundness. In this paper, we present the design, specification, and implementation of

a programming language and a runtime system for wireless sensor networks that are safe by design. We

say this in the sense that we can statically detect a large set of would-be runtime errors, and that the

runtime system will not incorrectly execute an application, once the latter is deployed. We have a full

prototype implementation of the system that supports SunSPOT devices, the simulation tool VisualSense,

and local computer networks for fast deployment and testing of applications. Development is supported

by an IDE implemented on top of the Eclipse tool that embeds both the compiler and the virtual machine

seamlessly, and is used to produce software releases.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Wireless sensor networks (WSN) are one of the most challeng-

ing hardware platforms to program. They are gatherings of large

numbers of small physical devices, commonly referred to as sen-

sors or motes, capable of sensing the environment. The commu-

nication infra-structure is based on low-power wireless technolo-

gies and uses ad-hoc networking protocols [1]. The difficulty in

programming WSN results from the unique characteristics of these

platforms, especially when compared with other ad-hoc networks

such as MANETs. The sensor devices are extremely limited in terms

of hardware resources, namely CPU and memory, and energy, typ-

ically provided by batteries. Their deployment at remote locations

makes physical access to the devices, e.g., for maintenance and de-

bugging, in many cases difficult if not impossible, or simply not

practical.

There are many proposals for programming languages for WSN

providing the programmers with distinct levels of hardware and

network awareness and distinct programming abstractions [2].

Given the aforementioned restrictions, programming languages for

wireless sensor networks are often tightly coupled with the un-

derlying operating system, which is typically very lightweight and

∗ Corresponding author. Tel.: +351 960376714.

E-mail addresses: lblopes@dcc.fc.up.pt (L. Lopes), fmartins@di.fc.ul.pt

(F. Martins).

modular [3–7]. At the very lowest level of programming, run-

ning on the bare hardware, we have languages such as Push-

pin [8], and languages such as TinyScript and Mottle that use a

thin abstraction layer for the hardware provided by a virtual ma-

chine [9,10]. Abstracting away from the hardware there are lan-

guages like the (ubiquitous) component-based language nesC [11]

tightly coupled with its host operating system TinyOS [7]. Higher

up in the abstraction level we find macroprogramming languages

that allow programmers to abstract away, not only from devices,

but also from the network infra-structure, by resorting to sophis-

ticated compilers to automate code generation and deployment.

They provide abstractions such as: streams, e.g., Regiment [12];

databases, e.g., TinyDB [13] and Cougar [14]; regions, e.g., Abstract

Regions [15]; agents, e.g., Sensorware [16] and Agilla [17]; web-

services, e.g., IrisNet [18].

Despite the diversity of proposals, applications for wire-

less sensor networks are difficult to debug and often produce

runtime errors. The problem stems from the fact that most

languages are built in a fairly ad-hoc way, typically by first iden-

tifying a set of adequate programming abstractions and imple-

menting a compiler that maps the high-level syntax directly into

native code or, more commonly, into an intermediate language

representation, nesC code for example, or some form of byte-

code. Macroprogramming languages are illustrative of this state

of affairs. Regiment [12], for example, a strongly typed functional

macroprogramming language, is compiled into a low-level token

http://dx.doi.org/10.1016/j.sysarc.2016.01.004

1383-7621/© 2016 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.sysarc.2016.01.004
http://www.ScienceDirect.com
http://www.elsevier.com/locate/sysarc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.sysarc.2016.01.004&domain=pdf
mailto:lblopes@dcc.fc.up.pt
mailto:fmartins@di.fc.ul.pt
http://dx.doi.org/10.1016/j.sysarc.2016.01.004


L. Lopes, F. Martins / Journal of Systems Architecture 63 (2016) 16–32 17

machine language, which is then itself compiled into a nesC imple-

mentation of the runtime based on the distributed token machine

model. The complex compilation scheme makes it rather difficult

to establish a link between the semantics of the language and that

of the corresponding runtime system, especially in the absence of

a formal specification for the programming language and for the

runtime system.

Runtime errors in sensor network applications can have multi-

ple origins: (Type I) device malfunction or interference from the

environment; (Type II) semantic errors in the application; (Type

III) the runtime system does not preserve the language semantics;

(Type IV) the compiler generates code that does not preserve the

language semantics.

Errors of Type I are difficult or impossible to eliminate in most

deployments. Type II errors can be controlled by imposing an ade-

quate programming discipline, e.g., enforced by a type system, and

by carefully testing the application before deployment. Type III and

IV errors are far more subtle but very important, as they may un-

dermine a deployment with seemingly unexplainable errors and

result in significant extra costs. Type III errors can be eliminated

by proving that the specification of the runtime preserves the se-

mantics of the source language. This of course still leaves some

margin for errors in the programming of the runtime, but these

can be weeded out through conventional tests. Finally, Type IV er-

rors can be eliminated by proving that the compiler generates code

that preserves the semantics of the original program. This is usu-

ally called a certified compiler.

In short, errors of types II to IV can be eliminated by provid-

ing a formal specification for the programming language semantics

and for the runtime semantics, and proving static properties that

relate them, e.g., type-safety and soundness. Language type-safety

ensures that well-typed programs do not give rise to runtime pro-

tocol errors. A compiler for a type-safe programming language can

statically type-check code and identify would-be runtime protocol

errors, before the application is deployed over the network. This is

possible since the full application, including the code to be run at the

sink(s) and the code to be run at the nodes, is compiled as a unit, al-

lowing for communication protocol errors to be prematurely detected.

This addresses errors of Type II. On the other hand, the soundness

property ensures that the underlying runtime system preserves the

semantics of the programming language. This is achieved by im-

plementing the runtime system based on an abstract specification

(e.g., a virtual machine) that can be proved to preserve the seman-

tics of the programming language. This addresses errors of Type III.

We do not address Type IV errors in this paper. This is the subject

of current research.

To illustrate the design and implementation principles that we

propose, we present the step by step development of Callas [19],

a programming language for WSN. The language and its seman-

tics are specified using a formal model, based on concurrency the-

ory [20,21]. The runtime system for the language was specified in

the form of a virtual machine, defined as a state transition system.

Elsewhere we proven that the language is type-safe and that there-

fore well-typed programs do never produce a large set of runtime

errors [22]. Moreover, we also proved that the runtime system pre-

serves the semantics of the language, a property also known as

soundness, and thus correctly executes Callas applications. In this

paper we overview the design of the programming language and

of the runtime system, and describe a full prototype implemen-

tation of this framework. The prototype includes a language com-

piler, a modular virtual machine that supports multiple hardware

and software platforms, e.g., SunSPOT networks [23] and the Vi-

sualSense simulator [24] for deployment, and a development envi-

ronment based on an Eclipse plugin that seamlessly embeds both

the compiler and the runtime system and is used for software

releases.

To our knowledge the use of process calculi to model and de-

sign languages for sensor networks is a novel approach. Previous

work on process calculi for wireless systems is scarce and focuses

on communication protocols. Prasad [25] established the first pro-

cess calculus approach to modeling broadcast based systems. Later

work by Ostrovský et al. [26] established the basis for a higher-

order calculus for broadcasting systems. More recently, Mezzetti

and Sangiorgi [27] discuss the use of process calculi to model wire-

less systems, again focusing on the details of the lower layers of

the protocol stack (e.g., collision avoidance) and by establishing an

operational semantics for the networks.

In the recent past the Internet of Things (IoT) gained a lot of

attention both from the Academia and from the Industry. The IoT

is a network of physical objects or “things” embedded with elec-

tronics, software, sensors, and network connectivity, which enables

these objects to collect and exchange data. This paper focus on a

more restricted scenario, that of wireless sensor networks. WSN

aggregates a myriad of devices with similar hardware and software

characteristics that autonomously collect, eventually process, and

send data to gateways. From the IoT perspective, the data emanat-

ing from the gateway would be thought of as a single resource. IoT

poses interesting challenges of its own, like, for instance, the inter-

operability between things. On the other hand, programming WSN

is by itself difficult, error-prone, and correcting bugs can be diffi-

cult if not impossible after deployment in the field. It is this last

problem that we tackle in this paper and propose a solution that

involves a language that is demonstrably correct, thus significantly

diminishing the sources of error for WSN applications.

The remainder of the paper is structured as follows. Section 2

presents the Callas language: its syntax, semantics, and briefly

overviews the language safety results. Section 3 presents the Callas

virtual machine: the bytecode format, the reduction rules, and

briefly describes the soundness result. Sections 4 and 5 describe

the prototype implementation that includes: the language com-

piler, the virtual machine with support for several hardware and

software platforms, and a development environment based on the

Eclipse tool [28]. Section 6 describes related work on programming

languages and virtual machines for wireless sensor networks. Fi-

nally, Section 7 ends the paper with some conclusions and per-

spectives for future work.

2. The programming model

This section aims at describing Callas, a programming language

for sensor networks that offers constructs to describe local compu-

tations, communications, code mobility, and code updates. The lan-

guage is based on a calculus [19,22] with the goal of establishing

a foundation for developing programming languages and runtime

systems for sensor networks.

We start by presenting the language with a running example

to illustrate the programming style of Callas (Section 2.1). There-

after, we introduce an abstract core language (Section 2.2) suit-

able for defining its formal semantics (Section 2.3), of which we

present only an excerpt to emphasize the foundations of Callas. In

Section 2.4 we state informally a type safety result—the interested

reader may refer to [22] for the details.

2.1. The Callas programming language

We introduce the Callas language by example, programming

a device that periodically reads the ambient’s temperature and

sends it over the network, as presented in Listing 1. A Callas pro-

gram is a sequence of type declarations followed by a code mod-

ule that implements the type for the devices in a WSN, known

as Device. Other declared modules arise as submodules of this

top-level module. We adopt Python’s line-oriented syntax, where



https://isiarticles.com/article/67540

