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a b s t r a c t

Intense competition and sophisticated customer needs have resulted in the development of more com-
plex products with a shorter lead time to market. One of the key factors in product development concerns
the understanding and management of complex relationships between customers’ needs and technical
requirements. Usually these complex relationships are expressed using imprecise descriptions in the
form of natural linguistic terms. Frequently, quality function deployment (QFD) is employed to manage
design information and assist decision-making in human centered product development. This work pro-
poses a rough set based QFD approach to manage the aforementioned imprecise design information in
product development. A novel concept known as rough number*, which is derived from the basic notions
of rough sets, is proposed to manage the imprecise design information in QFD analysis. A case study on a
bicycle design is used to illustrate the approach proposed. The result shows that the new approach pro-
posed can effectively manage the imprecise design information and facilitate decision-making in product
development.

� 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Product design is a knowledge intensive multi-disciplinary
development process which requires the acquisition, representa-
tion, management, and application of various design knowledge.
In this respect, techniques that are able to treat and manipulate
raw design information for product development become impor-
tant. Intense competition and sophisticated customer needs have
resulted in the development of more complex products with a
shorter lead time to market. One of the key factors in product
development concerns the understanding and management of
complex relationships between customers’ needs and technical
requirements (TRs). In this regard, quality function deployment
(QFD), which is widely accepted as a systematic methodology for
product development, is frequently used as an effective tool to
manage design information [1].

The first stage of QFD, which is known as the house of quality
(HOQ), manages the initial design information related to various
customer needs (called ‘WHATs’ in the HOQ) and the necessary
technical requirements (called ‘HOWs’ in the HOQ) that can fulfill
these needs. In developing a HOQ, customers’ perceptions/expecta-
tions about a product are usually solicited through survey and are
organized into a number of key customer needs. Subsequently, a
set of technical requirements that are able to fulfill these needs
are established by a team of experts in design and their relation-

ships with each customer need are determined by these experts.
As a result, QFD analysis ineluctably involves much imprecise
information, i.e. linguistic vague descriptions, which are frequently
expressed using such statements as ‘low importance’, ‘high impor-
tance’, ‘strong relationship’ and ‘weak relationship’. Usually such
imprecise design information cannot be effectively handled by
crisp values in the traditional way. In this respect, many studies
focusing on techniques to manage the vague and uncertain design
information in QFD have been carried out. Among them, fuzzy set
theory is one of the widely used techniques. Using fuzzy set theory,
linguistic descriptions can be translated into fuzzy numbers, which
can be manipulated by the mathematical operators provided by
fuzzy set theory. For example, Khoo and Ho [2] proposed a frame-
work of fuzzy QFD using symmetrical triangular fuzzy numbers
(STFNs) to describe the linguistic variables. Chan et al. [3] em-
ployed STFNs to analyze the voice of customers and rate the impor-
tance of customer needs in QFD. More recently, Chen et al. [4] rated
technical attributes in fuzzy QFD by integrating fuzzy weighted
average method with fuzzy expected value operators. Some other
fuzzy approaches which were based on fuzzy arithmetic and/or
fuzzy defuzzification [5–8], had also been developed to manage
imprecise and vague design information in product development.

Although fuzzy set theory has been widely used in QFD analysis,
the issues concerning the impact of fuzzy interval enlargement
after fuzzy arithmetic operations on the result of QFD analysis
and the subjectivity involved in the selection of fuzzy membership
functions to quantify vague design information have not been thor-
oughly investigated. Fuzzy arithmetic operations [9], which were
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extended from interval analysis [10], such as the addition and mul-
tiplication operations used in QFD analysis, may lead to the
enlargement of the resultant fuzzy intervals [11]. Accordingly,
the enlargement of fuzzy intervals may have an impact on QFD
analysis. On the other hand, as suggested by Jin [12], selection of
membership functions is critical for the performance of a fuzzy
system. Thus, it has been one of the challenging research topics
in the field of fuzzy set applications. More specifically, in the appli-
cations of subjective evaluations and heuristics, where fuzzy sets
are used to model the cognitive process of human beings, the
determination of membership functions is usually based on expe-
rience and intuition [12,13]. In practice, certain types of functions
such as triangular, trapezoidal, Gaussian or bell-shaped functions
are often used. Although some more sophisticated and objective
methods such as neural networks can be employed to tune the
membership functions through learning/training process [14,15],
in the early stages of product development, such learning/training
process may not be realistic or even feasible because the available
data are very limited [16].

This work attempts to address these issues by using a different
approach and proposes a novel concept known as rough number*

to manage the imprecise design information in product develop-
ment. The concept of rough number* is directly derived from the
basic notion of approximations in rough set theory. The rest of
the paper is organized as follows. Section two reviews the basic
concepts of rough set theory and highlights its advantages in deal-
ing with imprecise information. Section 3 proposes a novel concept
known as rough number*, which is derived using the basic notion
of rough approximations. Similar to fuzzy arithmetic, a set of arith-
metic operations enabling the manipulation of rough number*s for
QFD analysis, based on the interval analysis [10], are proposed.
Section four describes a QFD case study on a bicycle design to illus-
trate the approach developed. Finally, the major conclusions
achieved in this work are summarized in Section 5.

2. Basic notions of rough sets

Conventional mathematical logic is incapable of manipulating
data representing subjective or vague human ideas such as ‘very
important’ or ‘strong relationship’, which are very frequently
encountered in QFD analysis for example. In this respect, rough
set theory and its related techniques can be employed to deter-
mine the distinctions among data with the concept of approxima-
tions and generate reasonable solutions from vague or imprecise
information. Basically, a rough set is a formal approximation of a
crisp set (conventional set). It uses a pair of sets which give the
lower and upper approximations of the target set. The lower and
upper approximation sets themselves are crisp sets in the standard
version of rough set theory [17,18]. The lower approximation of a
target set is a conservative approximation consisting of only those
elements which can positively and certainly (probability = 1) be
identified as members of the set. The upper approximation is a lib-
eral approximation which includes all elements that can possibly
(with nonzero probability) be identified as members of the target
set. The difference between the upper and lower approximations
is the boundary region of a rough set, consisting of the elements
that can neither be ruled in nor ruled out as members of the target
set. Fig. 1 depicts the basic notions of rough set theory.

Obviously, a non-empty boundary region of a set implies that
the knowledge about the set is not sufficient to define it precisely.
In this respect, rough set theory expresses vagueness by means of
the boundary region of a set instead of using membership function
[17]. This is indeed the unique advantage of rough set theory in
dealing with vagueness and uncertainty. Unlike other methods
such as fuzzy set theory, Dempster–Shafer theory and statistical

methods, rough set theory does not require any external informa-
tion or additional subjective adjustment for data analysis. It uses
only the information presented in the given data and remains the
objectivity of information [17,19]. Furthermore, rough set theory
excels in handling imprecise information especially when the data
set is small in size and other tools like statistics are not suitable
[20]. In fact, in product development activities, especially in new
product design, it is very difficult to obtain large amount of design
information such as customer ratings and designer evaluations in
QFD analysis, and thus, the data size is usually very small. Hence,
rough set theory appears to be a more suitable tool to handle the
imprecise information for product development.

3. Rough number* enabled QFD

As mentioned earlier, QFD analysis usually has to deal with
imprecise descriptions of both customer needs and technical
requirements, which include subjective perceptions of customers
and judgments of technologists. Such information is usually in
the form of importance ratings based on an evaluation scale. Tradi-
tional standard rough set theory has to be modified so as to handle
such data in the ordered manner. In the following sub-section, a
novel concept of rough number* is proposed based on the basic no-
tions of rough sets, and integrated with fuzzy arithmetic opera-
tions to represent and analyze vague design information in QFD.

3.1. Rough number* and rough boundary interval

As known, classical rough set theory was suggested by Pawlak
[17] to solve inconsistencies in classification problems such as
importance ratings in QFD analysis. For example, when evaluating
the importance of a customer need, the distinct importance ratings
perceived by the customers can be viewed as ‘classes’ associated
with the customer need (also known as ‘object’ in classification
problems). Due to the diversity in customer opinions when assess-
ing the importance of a customer need, inconsistencies may exist
in the classes. Thus, the concept of approximations in rough set
theory can be extended to deal with such inconsistent or imprecise
information, as elaborated below.

Let U be a universe containing all the objects registered in an
information table, Y is an arbitrary object of U, and there is a set
of n classes, R = {C1, C2, � � �, Cn}, defined in the universe. If these clas-
ses are ordered in the manner of C1 < C2 < . . . < Cn, then for any
class, Ci e R, 1 6 i 6 n, the lower approximation of Ci can be defined
as

AprðCiÞ ¼ [fY 2 U=RðYÞ 6 Cig; ð1Þ

the upper approximation of Ci can be expressed as

AprðCiÞ ¼ [fY 2 U=RðYÞP Cig ð2Þ

and the boundary region of Ci is given by

BndðCiÞ ¼ [fY 2 U=RðYÞ–Cig
¼ fY 2 U=RðYÞ > Cig [ fY 2 U=RðYÞ < Cig ð3Þ

Thus the class, Ci, can be represented by a rough number* (RN)
which is defined by its lower limit ðLimðCiÞÞ and upper limit
ðLimðCiÞÞ, where

LimðCiÞ ¼
1

ML

X
RðYÞ Y 2 AprðCiÞ

��� ; ð4Þ

where ML is the number of objects contained in the lower approxi-
mation of Ci; and

LimðCiÞ ¼
1

MU

X
RðYÞ Y 2 AprðCiÞ

��� ð5Þ

L.-Y. Zhai et al. / Advanced Engineering Informatics 23 (2009) 222–228 223



https://isiarticles.com/article/7069

