Contents lists available at ScienceDirect

Personality and Individual Differences

journal homepage: www.elsevier.com/locate/paid

Convergent, but not divergent, thinking predicts susceptibility to associative memory illusions

Stephen A. Dewhurst ^{a,*}, Craig Thorley ^b, Emily R. Hammond ^b, Thomas C. Ormerod ^c

^a Department of Psychology, University of Hull, Hull HU6 7RX, England, United Kingdom

^b Department of Social and Psychological Sciences, Edge Hill University, Ormskirk, Lancashire L39 4QP, United Kingdom

^c Department of Psychology, Lancaster University, Lancaster, Lancashire LA1 4YF, United Kingdom

ARTICLE INFO

Article history: Received 13 December 2010 Received in revised form 10 March 2011 Accepted 11 March 2011

Keywords: False memory Individual differences Creativity

ABSTRACT

The relationship between creativity and susceptibility to associative memory illusions in the Deese/ Roediger–McDermott procedure was investigated using a multiple regression analysis. Susceptibility to false recognition was significantly predicted by performance on a measure of convergent thinking (the Remote Associates Task) but not by performance on a measure of divergent thinking (the Alternative Uses Task). These findings suggest that the ability to engage in convergent (but not divergent) thinking underlies some of the individual variation in susceptibility to associative memory illusions by influencing the automaticity with which critical lures are activated at encoding.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Roediger and McDermott (1995) showed that illusions of memory can be created when participants study lists of associated words. In the Deese/Roediger-McDermott (DRM) procedure (Deese, 1959; Roediger & McDermott, 1995), participants study lists of associates of a nonpresented "critical lure". For example, participants study words such as sour, candy, and sugar, which are associates of the critical lure sweet. When memory for the lists is tested, participants frequently claim to remember the critical lures, with levels of false memory equalling or even exceeding levels of correct memory. The DRM illusion has been explained in terms of an activation-monitoring account (Roediger, Watson, McDermott, & Gallo, 2001) whereby participants spontaneously generate associates of the studied words. The critical lures are then subject to errors of source monitoring (Johnson, Hashtroudi, & Lindsay, 1993) and falsely endorsed as having been studied. An alternative explanation is provided by fuzzy-trace theory (FTT, see Reyna & Brainerd, 1998) whereby critical lures are falsely remembered because they match the "gist" of the related items presented at study.

Although Roediger and McDermott's findings have been replicated many times (see Gallo, 2006, for a review), one phenomenon that has yet to be explained is the considerable individual variation in susceptibility to the DRM illusion. Elevated levels of false memory have been reported in elderly adults (Balota et al., 1999) and patients with frontal lobe damage (Melo, Winocur, & Moscovitch, 1999), while reduced levels of false memory have been observed in children (e.g., Brainerd, Reyna, & Forrest, 2002). Other studies have attempted to identify the causes of individual variation within the general adult population. For example, elevated levels of false memory have been observed in individuals who reported high levels of dissociative experiences and vivid imagery (Winograd, Peluso, & Glover, 1998), individuals with low working memory capacity (Watson, Bunting, Poole, & Conway, 2005), individuals high in need-for-cognition (Graham, 2007), and extraverts (Sanford & Fisk, 2009).

Given the extensive use of the DRM procedure in the study of false memories, it is important to identify other cognitive and personality factors that influence susceptibility to the illusion. The aim of the current research was to investigate whether susceptibility to the DRM illusion is predicted by creativity. A number of previous studies have shown that creative individuals are particularly susceptible to false autobiographical memories. For example, Hyman and Billings (1998) found that creativity (as measured by the Creative Imagination Scale) was positively related to the creation of false childhood memories. However, to the best of our knowledge, no studies have as yet investigated the influence of creativity on susceptibility to the DRM illusion.

Although creativity is a complex mental faculty that encompasses a variety of cognitive abilities (see Dietrich, 2004, for a review), a number of measurable components have been identified. It is possible that some, but not all, aspects of creativity may predict susceptibility to the DRM illusion. The aspects of creativity

^{*} Corresponding author. Tel.: +44 1482 465931; fax: +44 1482 465599. *E-mail address:* s.dewhurst@hull.ac.uk (S.A. Dewhurst).

^{0191-8869/\$ -} see front matter @ 2011 Elsevier Ltd. All rights reserved. doi:10.1016/j.paid.2011.03.018

that were the focus of the current study are commonly referred to as convergent and divergent thinking (Guilford & Hoepfner, 1971). Convergent thinking requires the production of the best single answer to a problem or set of problems and can be measured by the Remote Associates Task (RAT; Mednick, 1962). In the RAT, participants are presented with three words (e.g., food/forward/break) and asked to generate a semantic associate that can be paired with each of the three to form a compound word or phrase (e.g., fast). Divergent thinking requires the generation of multiple answers to a single problem and can be measured by the Alternative Uses Task (AUT; Guilford, 1967) in which participants are asked to generate alternative uses for a common object (e.g., a brick).

Mednick (1962) developed the RAT on the basis of his theory that creative individuals generate more and broader associations to a given stimulus. Our hypothesis, therefore, was that the false recognition of critical lures would be predicted by performance on the RAT, as both involve the generation of semantic associations. In contrast, the AUT measures the ability to generate novel or atypical ideas, which has less overlap with the processes that underlie the DRM illusion; therefore we did not expect the false recognition of critical lures to be predicted by performance on the AUT.

2. Method

2.1. Participants

Participants were 55 undergraduate students (41 females) who took part for course credit. Mean age was 21 years (SD = 5.29). They were tested at individual workstations in groups of up to 12 and participated for course credit. The research was carried out in accordance with *The Code of Ethics of the World Medical Association* (Declaration of Helsinki) for experiments involving humans.

2.2. Stimuli and design

Study items consisted of 16 DRM lists rated by Stadler, Roediger, and McDermott (1999) as producing high levels of false recognition. Each list comprised 12 associates of a nonpresented critical lure. The lists were divided into two sets of 8. Each set was studied by half the participants and the other set provided the distractor items for the recognition test. The recognition test consisted of a printed sheet containing 8 studied words (one from each list), the 8 critical lures of the studied lists, plus 8 list items and the 8 critical lures from the unstudied lists. The stimuli for the RAT consisted of 24 three-item problems taken from Bowden and Jung-Beeman (2003) presented on a two-sided response sheet with two columns of six items on each side. The items in each problem were presented one above the other with a line to the right for participants to record their responses. All participants saw the same stimuli in the same order. The AUT (Guilford, 1967) required participants to list alternative uses for a brick.

2.3. Procedure

The DRM lists were presented one at a time on PCs at a rate of 2 s per word with a 1 s interval. Each list was preceded by the list number (List 1, List 2, etc.) displayed for 2 s. After the presentation of the final list, participants were given a letter cancellation task for 1 min. They were then given the recognition test, which they completed at their own pace. Participants were then allowed 8 min to complete the AUT, followed by a further 8 min to complete the RAT (these times were based on the results of pilot studies). As an example of the RAT, participants were shown that the word *pin*

could be paired with *safety*, *cushion*, and *point* to make *safety pin*, *pincushion*, and *pinpoint*.

3. Results

Multiple regression was used to assess the ability of convergent and divergent thinking to predict critical lure, studied word, and distractor item recognition rates. Preliminary analyses were conducted to ensure no violation of the assumptions of normality, linearity, multicollinearity, and homoscedasticity. The sample size (n = 55) was also sufficient for this procedure according to the guidelines of Stevens (2009).

The AUT responses were rated for creativity on a scale of 0–4. Impossible uses (e.g., a time machine) were given a score of 0, standard uses (e.g., to build a wall) were given a score of 1 (with no additional scores for repetition of uses), and alternative uses were given scores of 2, 3, or 4 depending on the rated creativity. Initial ratings were made by the third author, and 20% were blind double-rated by the second author. The initial inter-rater reliability score was 92%, with all disagreements resolved through discussion.

3.1. Critical lure results: hierarchical multiple regression

A 61% false recognition rate for critical lures was observed (M = 4.90, SD = 1.72), indicating that the DRM effect was successfully replicated. It was expected that convergent thinking (M = 7.14, SD = 2.43) would be a significant predictor of critical lure recognition whereas divergent thinking (M = 26.91, SD = 11.77) would not. Given these strong predictions, a Hierarchical Multiple Regression was conducted with the convergent thinking scores entered at Step 1 and the divergent thinking scores at Step 2 (see Table 1).

The initial correlations revealed a significant relationship between convergent thinking and critical lure recognition (r = .33, p < .01), but no significant relationship between divergent thinking and critical lure recognition (r = .15, p = .13), or between convergent thinking and divergent thinking (r = .02, p = .44). The regression analysis revealed that convergent thinking accounted for 11% (R^2 = .11) of the variance in false recognition F(1, 53) = 6.29, p < .05. The addition of the divergent thinking scores in Step 2 resulted in a non-significant 2% increase in the explained variance, $\Delta F(1, 53)$ = 1.25, p = .27. Convergent thinking therefore appears to be a significant predictor of critical lure false recognition (β = .32, p < .05), whereas divergent thinking does not (β = .14, p = .27).

3.2. Distractor items: simultaneous multiple regression

As no relationship was expected between either convergent or divergent thinking and the false recognition of distractor items (M = 2.16, SD = 2.15), a simultaneous multiple regression was used for this second analysis (see Table 3). Initial correlations revealed a significant relationship between convergent thinking and

Table 1

Summary of the hierarchical multiple regression analysis for convergent and divergent thinking in relation to critical lure false recognition.

Step	В	SE B	β
1 Constant CT	3.26 .23	.69 .09	.33*
2 Constant CT DT	2.70 .23 .02	.85 .09 .02	.32* .14

CT = convergent thinking, DT = divergent thinking.

p < .05.

دريافت فورى 🛶 متن كامل مقاله

- امکان دانلود نسخه تمام متن مقالات انگلیسی
 امکان دانلود نسخه ترجمه شده مقالات
 پذیرش سفارش ترجمه تخصصی
 امکان جستجو در آرشیو جامعی از صدها موضوع و هزاران مقاله
 امکان دانلود رایگان ۲ صفحه اول هر مقاله
 امکان پرداخت اینترنتی با کلیه کارت های عضو شتاب
 دانلود فوری مقاله پس از پرداخت آنلاین
 پشتیبانی کامل خرید با بهره مندی از سیستم هوشمند رهگیری سفارشات
- ISIArticles مرجع مقالات تخصصی ایران