Associations Among Smoking, Anhedonia, and Reward Learning in Depression

Gabrielle I. Liverant
VA Boston Healthcare System and Boston University School of Medicine

Denise M. Sloan
Boston University School of Medicine National Center for PTSD, Behavioral Science Division, VA Boston Healthcare System

Diego A. Pizzagalli
McLean Hospital, Harvard Medical School

Christopher B. Harte
Boston University School of Medicine and VA Boston Healthcare System

Barbara W. Kamholz
VA Boston Healthcare System, Boston University, and Boston University School of Medicine

Laina E. Rosebrock
Northwestern University

Andrew L. Cohen
McLean Hospital

Maurizio Fava
Massachusetts General Hospital and Harvard Medical School

Gary B. Kaplan
VA Boston Healthcare System and Boston University School of Medicine

Depression and cigarette smoking co-occur at high rates. However, the etiological mechanisms that contribute to this relationship remain unclear. Anhedonia and associated impairments in reward learning are key features of depression, which also have been linked to the onset and maintenance of cigarette smoking. However, few studies have investigated differences in anhedonia and reward learning among depressed smokers and depressed non-smokers. The goal of this study was to examine putative differences in anhedonia and reward learning in depressed smokers ($n = 36$) and depressed nonsmokers ($n = 44$). To this end, participants completed self-report measures of anhedonia and behavioral activation (BAS reward responsivity scores) and as well as a probabilistic reward task rooted in signal detection theory, which measures reward learning (Pizzagalli, Jahn, & O’Shea, 2005). When considering self-report measures, depressed smokers reported higher trait anhedonia and reduced BAS reward responsivity scores compared to depressed nonsmokers.
contrast to self-report measures, nicotine-satiated depressed smokers demonstrated greater acquisition of reward-based learning compared to depressed nonsmokers as indexed by the probabilistic reward task. Findings may point to a potential mechanism underlying the frequent co-occurrence of smoking and depression. These results highlight the importance of continued investigation of the role of anhedonia and reward system functioning in the co-occurrence of depression and nicotine abuse. Results also may support the use of treatments targeting reward learning (e.g., behavioral activation) to enhance smoking cessation among individuals with depression.

Keywords: depression; smoking; anhedonia; reward learning; veteran

CIGARETTE SMOKING (via its introduction of many chronic medical conditions such as cardiovascular diseases, respiratory diseases, and cancer) is the leading cause of premature death in the United States and constitutes the single most preventable cause of morbidity and mortality worldwide (Centers for Disease Control and Prevention, 2002). Smoking is responsible for enormous health and economic burdens, and is linked to over 440,000 deaths per year in the United States (Centers for Disease Control and Prevention, 2008) and approximately 5 million premature deaths annually worldwide (Warren, 2002). Epidemiological studies indicate that smoking rates are disproportionately high among samples with mental illness (Breslau, 1995), particularly those with depression (Breslau, Novak, & Kessler, 2004; Grant, Hasin, Chou, Stinson, & Dawson, 2004; Lasser & O’Shea, 2005). For example, individuals with MDD show weakened responses in striatal regions (caudate, putamen, nucleus accumbens) to rewards and reward-predicting cues (Pizzagalli, Jahn, McChargue, & Doran, 2010; Leventhal, Ramsey, Brown, LaChance, & Kahler, 2008; Leventhal, Waters, Kahler, Ray, & Sussman, 2009). Thus, preliminary evidence suggests that anhedonia may play an important role in the association between these two conditions.

Dysfunction in the brain’s reward system is thought to contribute to reduced hedonic capacity in depression (Dillon et al., 2009; Pizzagalli, Jahn, & O’Shea, 2005). For example, individuals with MDD show weakened responses in striatal regions (caudate, putamen, nucleus accumbens) to rewards and reward-predicting cues (Pizzagalli et al., 2009). In addition, hypoactivity in these regions has been associated with anhedonia in depression and related disorders (Elman et al., 2009; Keedwell, Andrew, Williams, Brammer, & Phillips, 2005). A crucial element of reward system functioning is the capacity to acquire reward-based learning (i.e., the ability to modify behavior in response to positive reinforcement and to learn associations among neutral stimuli and unconditioned rewards). Recent studies suggest that impairments in the ability to adjust behavior as a function of reinforcement may be an important mechanism underlying the experience of anhedonia in mood disorders (Pizzagalli, Goetz, Ostacher, Iosifescu, & Perlis, 2008; Pizzagalli, Iosifescu, Hallett, Ratner, & Fava, 2008).

Phasic signaling in midbrain dopamine neurons has been implicated in reward learning processes. Specifically, dopamine bursts have been linked to both the receipt of unpredicted rewards in early learning phases and the presence of reward-predicting cues in later
دریافت فوری
متن کامل مقاله

امکان دانلود نسخه تمام متن مقالات انگلیسی
امکان دانلود نسخه ترجمه شده مقالات
پذیرش سفارش ترجمه تخصصی
امکان جستجو در آرشیو جامعی از صدها موضوع و هزاران مقاله
امکان دانلود رایگان ۲ صفحه اول هر مقاله
امکان پرداخت اینترنتی با کلیه کارت های عضو شتاب
دانلود فوری مقاله پس از پرداخت آنلاین
پشتیبانی کامل خرید با بهره مندی از سیستم هوشمند رهگیری سفارشات