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This paper proposes recurrent fuzzy system design using elite-guided continuous ant colony optimiza-
tion (ECACO). The designed recurrent fuzzy system is the Takagi-Sugeno-Kang (TSK)-type recurrent fuzzy
network (TRFN), in which each fuzzy rule contains feedback loops to handle dynamic system processing
problems. The ECACO optimizes all of the free parameters in each recurrent fuzzy rule in a TREN. Unlike

the general ant colony optimization that finds solutions in discrete space, the ECACO finds solutions in
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a continuous space. The ECACO is a population-based optimization algorithm. New solutions are gen-
erated by selection, Gaussian random sampling, and elite-guided movement. To verify the performance
of ECACO, three examples of dynamic plant control are simulated using ECACO-optimized TRFNs. The
ECACO performance is also compared with other continuous ant colony optimization, particle swarm
optimization, and genetic algorithms in these simulations.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Recurrent fuzzy systems (RFSs) are fuzzy systems with feed-
back connections in their structure. For temporal characteristic
problems, the performance of a RFS has been shown to outper-
form feed-forward fuzzy systems and recurrent neural networks
in several studies [1-11]. Many feedback structures in RFSs have
been proposed. One category of recurrent RFSs uses feedback loops
from the network output(s) as a recurrence structure [1,2]. Another
category of recurrent RFSs uses feedback loops from internal state
variables as the recurrence structure [4-8]. The local recurrence
property of the RFSs in studies [3,4] is achieved by feeding the out-
put of each membership function locally back to itself; thus, each
membership value is only influenced by its past values. Recurrent
self-organizing neural fuzzy inference networks (RSONFIN) [5] and
Takagi-Sugeno-Kang (TSK)-type recurrent fuzzy networks (TRFN)
[6] use a global feedback structure, where the firing strengths of
each rule are summed and fed back as internal network inputs. The
TREN is constructed from a series of recurrent fuzzy if-then rules
with TSK-type consequent parts, and its performance is shown to
be better than RSONFIN, in which a fuzzy set is used as the con-
sequence. Compared with other RFSs, which also use TSK-type
consequences [1,9], one major advantage of TRFN is that no a
priori knowledge of the plant order is required, which eases the
design process. In [6,8], the superiority of TRFN to recurrent neural
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networks in spatial-temporal problems, including dynamic plant
identification and control, was demonstrated. Therefore, this paper
selects TRFN as the designed RFS.

In addition to the difference in feedback structures, RFSs differ
in their learning methods. Most RFSs are learned through gradi-
ent descent-based learning algorithms [1-9]. One disadvantage of
this type of learning algorithm is the local optima problem. When
there are multiple peaks in a search space, search results usually
get trapped in a local solution when the gradient descent learn-
ing algorithm is used. Another problem is that the input-output
training data for gradient descent learning algorithms may not
be directly available. For example, for the dynamic control prob-
lem considered in this paper, the desired control outputs for a RFS
controller are unknown in advance for gradient descent learning.
For the problems above, a design of RFSs using population-based
optimization algorithms has been proposed [11-18]. One popular
approach is the use of genetic algorithms (GAs) for RFS parame-
ter optimization [6,11,13]. In [6], an elite genetic algorithm (EGA)
was proposed for TRFN parameter optimization. Another pop-
ular approach is the use of particle swarm optimization (PSO)
[12,15,16]. For example, TRFN design using PSO was proposed
in [12]. Different approaches to combining GA and PSO for RFS
designs were proposed in [12,14,17]. For example, the hybrid of
GA and PSO (HGAPSO) for TRFN design was proposed in [12].
The HGAPSO introduces the idea of crossover and mutation oper-
ations into individuals in PSO for performance improvement. In
this paper, a new learning algorithm based on continuous ant
colony optimization is proposed for TRFN design to further improve
performance.
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The use of a new meta-heuristic, ant colony optimization (ACO),
for solving optimization problems has been proposed recently [19].
The ACO technique is inspired by real ant colony observations. It is
a multi-agent approach that was originally proposed to solve diffi-
cult discrete combinatorial optimization problems. In the original
ACO meta-heuristic, artificial ant colonies cooperate to find good
solutions for difficult discrete optimization problems. The ACO has
been applied to feed-forward fuzzy system design problems in sev-
eral studies [20-22]. Because the optimization space is restricted
to be discrete, the designed FSs are unsuitable for problems where
high accuracy is a major concern. Recently, some continuous ACO
algorithms for optimization in continuous space have been pro-
posed [23-25], where one promising approach is the ACO in real
space (ACOg) [25]. The good performance of ACOr for continuous
function optimization has been demonstrated. Based on the ACOx
concept, this paper proposes elite-guided continuous ant colony
optimization (ECACO) and applies it to TRFN design for dynamic
plant control.

The major contribution of this paper is twofold. First, a new con-
tinuous ACO, the ECACO, is proposed. Like GA and PSO, the ECACO
works with a population of solutions. The ECACO proposes a new
approach for new solution generation at each iteration. Second, the
ECACO is applied to TRFN design. To the best of our knowledge, this
is the first paper that applies continuous ACO to RFS design. The
superiority of ECACO in comparison with ACOr, EGA, HGAPSO, and
otheradvanced PSO algorithms is demonstrated in three simulation
examples.

This paper is organized as follows. Section 2 introduces the TSK-
type recurrent fuzzy network (TRFN). Section 3 introduces the TRFN
design by ECACO. Section 4 analyzes the ECACO algorithm. Sec-
tion 5 presents simulation results of the ECACO-designed TRFN for
dynamic plant control. This section also compares the ECACO per-
formance with other optimization algorithms. Section 6 discusses
the similarity and difference between the ECACO and discrete ACO.
This section also discusses the major factors that the ECACO out-
performs GAs and PSO in learning performance. Finally, Section 7
presents the conclusions.

2. TSK-type recurrent fuzzy network (TRFN)

Fig. 1 shows the TREN structure [6]. Each recurrent fuzzy if-then
rule in TRFN, consisting of r rules and n external inputs, X1, . . .,Xn,
is in the following form:

Rule i:If x1(t) is A;; and x(t) is Ap and
and x,(t) is A;, and hi(t) is G

n
Then y(t+1) is dig+ 3 _ayx(t) + Giny1 hi(t) )
j=1
And hy(t+1) is v; and hy(t+1) is v and
and h(t+1) is v;

where A; and G are fuzzy sets, and v;; and aj; are the consequent
parameters for inference output h; and y, respectively. The conse-
quent part for the external output y is a TSK type and is a linear
combination of the external input variables x; and internal vari-
ables h;, plus a constant. In TRFN, the recurrent property comes
from feeding the internal variables, which are derived from fuzzy
firing strengths, back to both the network input and output lay-
ers. In this configuration, each internal variable is responsible for
memorizing the temporal history of its corresponding fuzzy rule.

To give a clear understanding of the mathematical function of
each node, we will describe the TRFN functions layer by layer. For
notation convenience, the net input to the ith node in layer k is
denoted by ugk) and the output value by ng).

Layer 1: No function is performed in this layer. The node only
transmits input values to layer 2.

Layer2: Nodesin layer 2 act as membership functions. Two types
of membership functions are used in this layer. For external input,

u](.z) = x;, the following Gaussian membership function is used:

2
(u(,z) — mu)

-4 " % and uj(.z) = O](.U, (2)

(2)
0" =exp >
bij

]

where m;; and by are, respectively, the center and the width of
the Gaussian membership function of the ith term in the jth input
variable ;. For internal variable, u1§2) = h;, the following sigmoid
membership function is used:

o2 — % and ugz) = OSS). (3)
1+ exp{—ug )}

Layer 3: Each node in this layer calculates the firing strength of
a rule by product operation. The function of each rule is

n+1 n (1) 2
0./ —my;
(3) _ (2) _ 1 ) _ J v
07" = I |Oj = exp E <bij )

j=1 1+exp (‘Of‘s)) i=1
(4)

Layer 4: Nodes in this layer perform a linear summation of the
TSK-type consequent. The mathematical function of each node i is

n+1 n
4 4
OE ) = E a,-ju]( - ajo + E QjjXj + Ain1 h;. (5)
Jj=0 j=1

Layer 5: The context node functions as a defuzzifier for the fuzzy
rules with inference output h. The link weights represent the single-
ton values in the consequent part of the internal rules. The simple
weighted sum is calculated in each node:

.
hi =01 = Zoj(.”v,,. (6)
j=1

As in Fig. 1, the delayed value of h; is fed back to layer 1 and acts
as an input variable to the antecedent part of a rule. Each rule has
a corresponding internal variable h and is used to determine the
degree of influence of the temporal history to the current rule.

Layer 6: The node in this layer computes the output y of the
TREN. The output node, together with links connected to it, acts as
a defuzzifier. The mathematical function is

LPNEIPNC))
y-o0 - =% (7)
.0
j=1"]j

For TREN design using the ECACO, the number of rules r in a
TREN is assigned in advance. The ECACO optimizes all of the free
parameters, including m;; and bj; in Layer 2, vj; in Layer 5, and a;; in
Layer 4, in the TRFN.

3. Elite-guided continuous ant colony optimization
(ECACO) for TRFN design

In discrete ACO [19], the value of a variable S is selected from a
discrete set according to sampling from a discrete probability den-
sity function (PDF). The fundamental idea underlying continuous
ACO is the extension of ACO from the discrete solution domain
and discrete PDF to the continuous solution domain and contin-
uous PDF, respectively. Because the most popular continuous PDF
is the Gaussian function, it has been used in several studies [24,25].



ISIf)rticles el Y 20 6La5 s 3l OISl ¥
Olpl (pawasd DYl gz 5o Ve 00 Az 5 ddes 36kl Ol ¥/
auass daz 3 Gl Gy V

Wi Ol3a 9 £aoge o I rals 9oy T 55 g OISl V/

s ,a Jol domieo ¥ O, 55l 0lsel v/

ol guae sla oLl Al b ,mml csls p oKl V7

N s ls 5l e i (560 sglils V7

Sl 5,:K8) Kiadigh o Sl (5300 0,00 b 25 ol Sleiiy ¥/


https://isiarticles.com/article/7707

