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a b s t r a c t

This work is related with the implementation of a finite volume method to solve the 2D Shallow Water
Equations on Graphic Processing Units (GPU). The strategy is fully oriented to work efficiently with
unstructured meshes which are widely used in many fields of Engineering. Due to the design of the
GPU cards, structured meshes are better suited to work with than unstructured meshes. In order to
overcome this situation, some strategies are proposed and analyzed in terms of computational gain, by
means of introducing certain ordering on the unstructured meshes. The necessity of performing the sim-
ulations using unstructured instead of structured meshes is also justified by means of some test cases
with analytical solution.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Physically based simulations of complex systems usually
require large computational facilities to be completed in a reason-
able time. Moreover when the simulated phenomenon is unsteady
and based on a dynamical estimation of the updating time step, the
computational performance is an important topic to be taken into
account. One of the most widespread strategies to reduce the
computational cost is the use of parallel techniques, involving a
suitable number of processors. Since CPU frequencies seem to be
reaching their maximum capacity [1], nowadays Many-Core paral-
lel techniques appear to be an interesting option.

In recent years, Graphic Processing Unit (GPU) has been used to
accelerate the calculations because of its inherent vector-oriented
designing. This paradigm is known as General-Purpose Computing
on Graphics Processing Unit (GPGPU) and it is widely used for a
very large range of applications in CFD such as [2–5] as well as
other environmental applications such [6]. In the present work,
special attention is paid to the application of these GPUs to
unsteady flows of interest in hydraulics. Shallow Water models
in particular are widely used to simulate surface geophysical flows.
These situations usually involve large size domains and long time

scales. Practical applications require a compromise between spatial
accuracy and computational efficiency. In order to achieve the nec-
essary spatial resolution, rather fine grids become necessary in
many cases requiring more data storage, increasing proportionally
the number of operations and reducing the allowable time step
size for explicit calculations. When, at the same time, a reasonable
computational time is desired, the use of GPU codes is one of the
options for computing large space and temporal domain problems.

The idea of accelerating the calculations in unsteady hydraulic
simulation using multiple CPU was recently reported in [7,8] or
[9] as well as using GPU in [10–12] or [5]. Although a very good
compromise between number of CPUs used and performance is
offered by the former option, the cost of using multiple CPU is
significant due to the hardware investment and associated use.
Alternatively, the GPU technology offers the performance of smal-
ler clusters with less disbursement [13]. The main difficulty, and
apparent drawback, when porting codes from CPU to GPU, is the
cell order required by the GPU to process data efficiently. This
drawback is not present when dealing with structured meshes
due to the inherent order and a simple and efficient implementa-
tion is relatively easy to be obtained.

Despite the wide use of structured meshes, complex geometries
for internal or external boundaries are problematic to be repre-
sented if not using unstructured meshes. Moreover, when dealing
with topographic representation some recent works [14] have
shown the benefit of using unstructured meshes in unsteady
hydraulic simulations over irregular topography. The quality of
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the numerical results is sensitive to the grid resolution. Hence grid
refinement is clearly an option to modify the whole resolution. In
that sense, adaptive grid refinement, readily available when using
triangular unstructured meshes [15], designed to follow local bed
variations or irregular boundaries can be very useful. The present
work is motivated by the implementation in GPU of a code able
to perform unsteady hydraulic simulations on variable density tri-
angular unstructured meshes.

The performance of GPU based calculations with Double Preci-
sion (double) is lower than those that use Single Precision
(float) [16,5]. In the particular case of the 2D Shallow Water
Equations with source terms [17,18], the use of float is not
always desirable. In fact, when simulating complex topography
cases, wave propagation over dry beds represents a numerical
challenge. The past experience with the dynamical stability control
of such transient flows involving wet/dry fronts indicates that
double precision is always required. All the performance analysis
presented will deal with that kind of data.

In the first part of the text, the governing equations are out-
lined. They are followed by a description of the finite volume
updating scheme used. Then, the most relevant general aspects
of the implementation in GPU are identified. The particular diffi-
culties encountered when dealing with triangular unstructured
meshes and some improvements to overcome them are detailed
in the following section. Finally, they are applied to two test cases
in order to prove their behaviour when using unstructured meshes.

2. Mathematical model/governing equations

The two-dimensional Shallow Water Equations (SWE), which
represent depth averaged mass and momentum conservation,
can be written as follows:
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are the conserved variables with h representing the water depth,
qx ¼ hu, qy ¼ hv and u ¼ ðu;vÞ the depth averaged velocity vector
along the ðx; yÞ coordinates respectively. The fluxes of these
variables are E ¼ ðF;GÞ given by:
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where g is the acceleration due to the gravity.
The source terms of the system are the bed slope and the

friction terms:
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where sb;x and sb;y are the components of the bed friction stress and
qw is the water density. These friction losses in both ðx; yÞ axis are
written in terms of the Manning’s roughness coefficient n:
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3. Numerical scheme

The numerical resolution of system (1) can be obtained by
means of the first order upwind finite volume scheme. Integrating

in a volume or grid cell X the numerical scheme can be expressed
compactly:
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It is possible to define a Jacobian matrix eJk of the normal flux at
each edge as a result of the local linearization

dðE � nÞk ¼ eJkdUk ð7Þ

and to diagonalize it in terms of matrices eP and eK, formed by its
eigenvalues ~km and eigenvectors ~em respectively:
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where ~u � n ¼ ~unx þ ~vny. The definition of the averaged variables is
as follows [19]:
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The difference across the edge k can be projected onto the
eigenvectors basis [18]:

dUk ¼ Uj � Ui ¼ ePk
eAk ð10Þ

where eAk ¼ ð~a1; ~a2; ~a3ÞTk contains the set of wave strengths. Follow-
ing the same procedure with the source terms [18]

ðeTnÞk ¼ ePk
eBk ð11Þ

where eBk ¼ ð~b1; ~b2; ~b3Þ
T
k contains the source strengths.

More information about the values of the wave and the source
strengths as well as the entropy fix can be found in [18]. The
contributions due to the fluxes and the source terms are combined
in a compact expression

ð~cmÞk ¼ ~km ~am � ~bm
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The 2D numerical upwind explicit scheme is formulated using
only the contributions that arrive to the cell:

~c�k ¼
1
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so that the finite volume approach for the updating of a single cell of
area Xi is [20]:
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Considering that in the explicit scheme (14) each k cell edge is
used to deliver information between a pair of neighbouring cells of
different size, the time step size compatible with numerical
stability is limited by

Dt 6 Dt~k Dt~k ¼
minðvi;vjÞ

maxm¼1;2;3j~kmj
ð15Þ

so that the following dimensionless quantity is defined

CFL ¼ Dt

Dt~k
6 1 ð16Þ

to control the numerical stability of the method.
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