Evaluation of the multiobjective ant colony algorithm performances on biobjective quadratic assignment problems

Celal Öz Kale*, Alpaslan Fıglalı
Industrial Engineering Department, Kocaeli University, 41380 Kocaeli, Turkey

A R T I C L E I N F O
Article history:
Received 17 March 2012
Received in revised form 17 December 2012
Accepted 8 January 2013
Available online xxxx

Keywords:
Multiobjective ant colony optimization (MOACO) algorithms
Biobjective quadratic assignment problem (BiQAP)
Multiobjective optimization

A B S T R A C T
The difficulty of resolving the multiobjective combinatorial optimization problems with traditional methods has directed researchers to investigate new approaches which perform better. In recent years some algorithms based on ant colony optimization (ACO) metaheuristic have been suggested to solve these multiobjective problems. In this study these algorithms have been reported and programmed both to solve the biobjective quadratic assignment problem (BiQAP) instances and to evaluate the performances of these algorithms. The robust parameter sets for each 12 multiobjective ant colony optimization (MOACO) algorithms have been calculated and BiQAP instances in the literature have been solved within these parameter sets. The performances of the algorithms have been evaluated by comparing the Pareto fronts obtained from these algorithms. In the evaluation step, a multi significance test is used in a non hierarchical structure, and a performance metric (P metric) essential for this test is introduced. Through this study, decision makers will be able to put in the biobjective algorithms in an order according to the priority values calculated from the algorithms’ Pareto fronts. Moreover, this is the first time that MOACO algorithms have been compared by solving BiQAPs.

1. Introduction

The quadratic assignment problem (QAP) is one of the NP-hard problems. Since its first formulation introduced by Koopmans and Beckmann [1], it has been used to model a wide variety of areas in real-life problems such as facility layouts, parallel and distributed computing, and combinatorial data analysis. In addition, the traveling salesman problem which is a combinatorial optimization problem, the problems such as maximum clique and graph partitioning problems can be formulated as a QAP. It is possible to see many different formulations to describe QAP instances as structural. Some of these are integer programming, combinatorics, linear algebra, graph theory etc. In spite of some difficulties in solving QAP, with the evolution of new mathematical-based solution techniques that are less than metaheuristic techniques quantitatively, it has become more encouraging and challenging.

Multiobjective optimization problems that have to be optimized simultaneously, making it particularly difficult to solve the problem therefore, are characterized by a few objectives. The use of metaheuristics for these problems has been subject to a growing interest in the last decade. The existence of many multiobjective problems in the real world, their intrinsic complexity, and the advantages of metaheuristic procedures to deal with them has strongly developed in this research area in the last few years [2].
The difficulties of solving multiobjective combinatorial optimization problems have led researchers to investigate the alternatives and approaches that have been getting better performances. In recent years some algorithms based on ant colony optimization (ACO) have been proposed to solve the multiobjective problems. ACO is a metaheuristic inspired by some varieties of ant species that are searching for the shortest path for food resources. Since Dorigo et al. [3] launched a study on the first ACO algorithm (Ant System), many researchers have evaluated different ACO algorithms to solve similar combinatorial optimization problems such as traveling salesman problem, quadratic assignment problems, scheduling, vehicle routing, and financing.

Recently, some researchers have designed ACO algorithms to solve multiobjective problems. Many various multiobjective problems included scheduling, portfolio selection, vehicle routing etc. have been solved by the algorithms which are called multiobjective ant colony optimization (MOACO) algorithms and good results have been obtained. It was the starting point of this study that MOACO algorithms have never been used to solve multiobjective QAP (MOQAP) instances. Thus, cited MOACO algorithms in the existing literature have been researched and programmed to solve biojective quadratic assignment problem (BiQAP) instances. Then, the performances of these algorithms have been evaluated by a multi significance test. A metric called P is introduced in this study for effectively evaluating the biojective algorithms in a pairwise comparison base.

The paper is organized as follows: Section 2 presents QAP studies, formulations of BiQAP and MOQAP; Section 3 describes ant colony optimization and MOACO algorithms; Section 4 presents computational experiments and results; Section 5 closes with conclusions.

2. Quadratic assignment problem

We see firstly [1] the QAP as a Boolean program followed by an integer linear programming problem. Since then, this formulation has been used in many studies. f_{ij} is the flow between facilities i and j, d_{kp} is the distance between locations k and p. It is the basic model of QAP:

\[
\begin{align*}
\min & \quad \sum_{i,j=1}^{n} f_{ij}d_{kp}x_{ik}x_{jp} , \\
\text{s.t.} & \quad \sum_{j=1}^{n} x_{ij} = 1, \quad 1 \leq j \leq n, \\
& \quad \sum_{i=1}^{n} x_{ij} = 1, \quad 1 \leq i \leq n, \\
& \quad x_{ij} \in \{0, 1\}, \quad 1 \leq i, j \leq n.
\end{align*}
\]

It is possible to see this model and many similar QAP formulations in the literature. Some of these formulations can be classified as integer programming, graph and group theory, discrete and combinatorial mathematics, trace. It seems that the variety of QAP mathematical structures is promising for the evaluation of mathematical solution techniques.

A wide variety of algorithms has been exposed in an attempt to produce optimum or near optimum solutions for QAP. When the optimum is unknown, or even if it is possible to use the exact algorithms in these instances, to research the local optima in internet-available literature instances is an accepted tendency for the comparison of these algorithms’ performances. It is possible to access to like these many performances through the internet and publications for QAP also (see, e.g. [21]). Recently it is possible to see numerous examples with proven optimal solutions. In one of these examples, Zhang evaluated an efficient pivoting based algorithm for QAP. Zhang tried this algorithm onto the instances of Nug, Tai, Chr, Had, Rou, Bur, Esc and Tho $n = 12$–40. He succeeded in finding the optimum solutions in several seconds to several minutes, and presented about 80 optimal solutions that have never been published in the literature [22]. Besides competing to find opti-
<table>
<thead>
<tr>
<th>مرحله</th>
<th>توضیحات</th>
</tr>
</thead>
<tbody>
<tr>
<td>دانلود و ترجمه کامل مقالات انگلیسی</td>
<td>✓ امکان دانلود نسخه تمام متن مقالات انگلیسی برای مشاهده و چاپ</td>
</tr>
<tr>
<td>ترجمه تخصصی ترجمه سفارشی</td>
<td>✓ پذیرش سفارش ترجمه تخصصی از جانب مشتری</td>
</tr>
<tr>
<td>جستجو در آرشیو جامعی از صدها موضوع و هزاران مقاله</td>
<td>✓ امکان جستجو در آرشیو جامعی از صدها موضوع و هزاران مقاله</td>
</tr>
<tr>
<td>دانلود رایگان اولین صفحه هر مقاله</td>
<td>✓ امکان دانلود رایگان اولین صفحه هر مقاله</td>
</tr>
<tr>
<td>پرداخت اینترنتی با کارت های عضو شتاب</td>
<td>✓ امکان پرداخت اینترنتی با کارت های عضو شتاب</td>
</tr>
<tr>
<td>دانلود فوری مقاله پس از پرداخت آنلاین</td>
<td>✓ دانلود فوری مقاله پس از پرداخت آنلاین</td>
</tr>
<tr>
<td>پشتیبانی کامل خرید با بهره مندی از سیستم هوشمند رهگیری سفارشات</td>
<td>✓ پشتیبانی کامل خرید با بهره مندی از سیستم هوشمند رهگیری سفارشات</td>
</tr>
</tbody>
</table>