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a  b  s  t  r  a  c  t

Many  real  world,  complex  phenomena  have  underlying  structures  of evolving  networks  where  nodes  and
links are  added  and  removed  over  time.  A central  scientific  challenge  is  the description  and  explanation
of  network  dynamics,  with  a key  test  being  the  prediction  of short  and  long  term  changes.  For  the  prob-
lem  of  short-term  link  prediction,  existing  methods  attempt  to determine  neighborhood  metrics  that
correlate  with  the appearance  of a link  in the  next  observation  period.  Recent  work  has  suggested  that
the  incorporation  of  topological  features  and  node  attributes  can improve  link  prediction.  We  provide
an  approach  to  predicting  future  links  by applying  the  Covariance  Matrix  Adaptation  Evolution  Strategy
(CMA-ES)  to optimize  weights  which  are  used  in  a linear  combination  of sixteen  neighborhood  and  node
similarity  indices.  We  examine  a large  dynamic  social  network  with over  106 nodes  (Twitter  reciprocal
reply  networks),  both  as  a test  of our  general  method  and  as  a problem  of scientific  interest  in itself.  Our
method  exhibits  fast  convergence  and  high  levels  of  precision  for the  top twenty  predicted  links.  Based
on  our  findings,  we suggest  possible  factors  which  may  be driving  the  evolution  of  Twitter  reciprocal
reply  networks.

© 2014  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Time varying social networks can be used to model groups
whose dynamics change over time. Individuals, represented by
nodes, may  enter or exit the network, while interactions, repre-
sented by links, may  strengthen or weaken. Most network growth
models capture global properties, but do not capture specific local-
ized dynamics such as who will be connected to whom in the future.
And yet, it is precisely this type of information that would be most
valuable in applications such as national security, online social net-
working sites (people you may  know), and organizational studies
(predicting potential collaborators).

In this paper, we focus primarily on the link prediction prob-
lem: given a snapshot of a network Gt = (V, Et), with nodes V (nodes
present across all time steps) and links Et, at time t, we seek to pre-
dict the most likely links to newly occur in the next timestep, t + 1
[1].
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Link prediction strategies may  be broadly categorized into three
groups: similarity based strategies, maximum likelihood algo-
rithms, and probabilistic models. As noted by Lu et al. [2], the
latter two approaches can be prohibitively time consuming for a
large network over 10,000 nodes. Given our interest in large, sparse
networks with N � 106, we  focus primarily on local information and
use similarity indices to characterize the likelihood of future inter-
actions. We  consider the two major classes of similarity indices:
topological-based and node attribute (Table 1).

There does not appear to be one best similarity index that is
superior in all settings. Depending on the network under analysis,
various measures have shown to be particularly promising [1,3–8].
These findings suggest that the predictors which work “best” for
a given network may  be related to the inherent structure within
the individual network rather than a universal best set of predic-
tors. Further, it is also plausible that the best link predictor may
change as the network responds to endogenous and exogenous
factors driving its evolution.

Topological similarity indices encode information about the rel-
ative overlap between nodes’ neighborhoods. We  expect that the
more “similar” two nodes’ topological neighborhoods are (e.g., the
more overlap in their shared friends), the more likely they may  be
to exhibit a future link. The common neighbors index, a building
block of many other topological similarity indices, has been shown
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Table  1
The sixteen similarity indices chosen for inclusion in the link predictor. We define the neighborhood of node u to be �(u) = {v ∈ V |eu,v ∈ E}, where G = (V, E) is a network,
consisting of vertices (V) and edges (E). The degree of node u is represented by ku , the adjacency matrix is denoted by A, and a path of length n between u, v ∈ V is denoted
as  Pn(u, v).

Topological similarity indices (abbreviation)
Jaccard Index (J) J(u, v) = |�(u)∩�(v)|

|�(u)∪�(v)| Measures the probability that a neighbor of u or v  is a neighbor of both u and v. This
measurement is a way  of characterizing shared content and has been shown to be
meaningful in information retrieval [15]

Adamic–Adar coefficient
(A)

A(u, v) =∑
z∈�(u)∩�(v)

1
log(|�(z)|)

Quantifies features shared by nodes u and v and weights rarer features more heavily
[19]. Interpreting this in the context of neighborhoods, the Adamic–Adar coefficient
can be used to characterize neighborhood overlap between nodes u and v, weighting
the overlap of smaller such neighborhoods more heavily

Common neighbors (C) C(u, v) = |�(u) ∩ �(v)| Measures the number of shared neighbors between u and v. Despite the simplicity of
this index, Newman [9] documented that the probability of future links occurring in a
collaboration network was positively correlated with the number of common
neighbors

Average path weight (P) P(u, v) =∑
p∈P2(u,v)∪P3(u,v)

wp

|P2(u,v)|+|P3(u,v)|

Computes the sum of the minimum weights on the directed paths between u and v
divided by the number of paths between u and v, where only paths of lengths 2 and 3
are considered due to the large size of this network. We take wp to be the minimum
weight of the edges in the path, in the spirit that a path’s strength is only as strong as
its weakest edge

Katz (K) K =
∑∞

n=1
ˇnAn Computed as such, the Katz is a global index [20]. This series converges to

(I  − ˇA)−1 − I, when  ̌ < max(�(A)). When  ̌ � 1 then K approximates the number of
common neighbors. Due to the size of our network and computational expense of this
index, we truncate to n = 3. We set  ̌ = 1 because we are not concerned with
convergence &to emphasize the number of paths of length greater than two. Previous
observations suggest that individuals who appear to be connected by a path length of
n  in Twitter RRNs may  actually be connected by a path of shorter length due to role of
missing data [34]

Preferential attachment
(Pr)

Pr(u, v) = ku × kv Gives higher scores to pairs of nodes for which one or both have high degree. This
index arose from the observation that nodes in some networks acquire new links with
a  probability proportional to their degree [9] and preferential attachment random
growth models [10]

Resource allocation (R) R(u, v) =
∑

z∈�(u)∩�(v)
1

|�(z)| Considers the amount of a given resource one node has and assumes that each node
will distribute its resource equally among all neighbors [3]

Hub promoted index (Hp) Hp(u, v) = |�(u)∩�(v)|
min{ku,kv } First proposed to measure the topological overlap of pairs of substrates in metabolic

networks, this index assigns higher scores to links adjacent to hubs since the
denominator depends on the minimum degree of the two  users [11]

Hub depressed index (Hd) Hd(u, v) = |�(u)∩�(v)|
max{ku,kv } When one of the nodes has large degree, the denominator will be larger and thus Hd is

smaller in the case where one of the users is a hub [13]
Leicht–Holme–Newman
index (L)

L(u, v) = |�(u)∩�(v)|
kukv

Measures the number of common neighbors relative to the square of their geometric
mean. This index gives high similarities to pairs of nodes that have many common
neighbors compared to the expected number of such neighbors [14]

Salton index (Sa) Sa(u, v) = |�(u)∩�(v)|√
kukv

Measures the number of common neighbors relative to their geometric mean [15]

Sorenson index (So) So(u, v) = 2|�(u)∩�(v)|
ku+kv

Measures the number of common neighbors relative to their arithmetic mean. This
index is similar to J, however J counts the number of (unique) nodes in the shared
neighborhood. This index was  previously used to establish equal amplitude groups in
plant sociology based on the similarity of species [16]

Individual characteristics similarity indices
Id similarity (I) I(u, v) =

1 − |Id(u)−Id(v)|
max{|Id(a)−Id(b)|}a,b∈V

In 2008, user ids were numbered sequentially and a user’s id served as a proxy for the
relative length of time since opening a Twitter account. Id similarity characterizes the
extent to which two individuals adopt Twitter simultaneously

Tweet count similarity (T) T(u, v) =
1 − |T(u)−T(v)|

max{|T(a)−T(b)|} a,b∈V

Tweet count T(u) measures the number of tweets we have gathered for node u in a
given week. Tweet count similarity quantifies how similar two individuals’ tweet
counts are, with 1 representing identical tweet counts and 0 representing dissimilar
tweet counts

Happiness similarity (H) H(u, v) =
1 − |h(u)−h(v)|

max {|h(a)−h(b)|}a,b∈V

Building on previous work [40], happiness scores (h(u) and h(v)) are computed as the
average of happiness scores for words authored by users u and v during the week of
analysis

Word  similarity (W)  W(u, v) =
1  − 1

2

∑50,000

n=1
|fu,n − fv,n|

From a corpus consisting of the 50,000 most commonly occurring words used in
Twitter from 2008 through 2011 [40], the similarity of words used by u and v is
computed by a modified Hamming distance, where fu,n represents the normalized
frequency of word usage of the nth word by user u. The value of W(u, v) ranges from 0
(dissimilar word usage) to 1 (similar word usage) [34]

to correlate with the occurrence of future links [9]. Several vari-
ants of this index have been proposed and have been shown to
be useful for link prediction in a variety of settings [3,10–18]. See
[2] for a review. In their seminal paper on link prediction, Liben-
Nowell and Kleinberg [1] examined author collaboration networks
derived from arXiv submissions in four subfields of Physics. They
found that neighborhood similarity measures, such as the Jaccard
[15], Adamic–Adar [19], and the Katz coefficients [20] provided a
large factor improvement over randomly predicted links.

As a complement for topological similarity indices, node-
specific similarity indices examine node attributes, such as
language, topical similarity, and behavior, in the case of social
networks. Several studies have suggested that incorporating these
measures can enhance link prediction [2,4,22–26]. In training
algorithms for link prediction, researchers have used supervised
learning including support vector machine [27], decision trees [4],
bagged random forests [17], supervised random walks [6], multi-
layer perceptrons, and others. Notably, Al Hasan et al. [27] use both



https://isiarticles.com/article/78851

