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a b s t r a c t

Hybrid evolutionary algorithms (EAs) are effective optimization methods that combine multiple EAs.
We propose several hybrid EAs by combining some recently-developed EAs with a biogeography-based
hybridization strategy. We test our hybrid EAs on the continuous optimization benchmarks from the
2013 Congress on Evolutionary Computation (CEC) and on some real-world traveling salesman problems.
The new hybrid EAs include two approaches to hybridization: (1) iteration-level hybridization, in which
various EAs and BBO are executed in sequence; and (2) algorithm-level hybridization, which runs various
EAs independently and then exchanges information between them using ideas from biogeography. Our
empirical study shows that the new hybrid EAs significantly outperforms their constituent algorithms
with the selected tuning parameters and generation limits, and algorithm-level hybridization is generally
better than iteration-level hybridization. Results also show that the best new hybrid algorithm in this
paper is competitive with the algorithms from the 2013 CEC competition. In addition, we show that the
new hybrid EAs are generally robust to tuning parameters. In summary, the contribution of this paper is
the introduction of biogeography-based hybridization strategies to the EA community.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Evolutionary algorithms (EAs) are optimization techniques that
have become highly popular in recent decades (Simon, 2013; Yao et al.,
1999; Wolpert and Macready, 1997; Neri and Cotta, 2012). One of the
main reasons for their success is that they provide a general purpose
mechanism to solve a wide range of problems. Many EAs have been
proposed, including genetic algorithms (GA) (Ahn, 2006), evolution
strategies (ES) (Beyer, 1994; Beyer and Sendhoff, 2008), ant colony
optimization (ACO) (Dorigo et al., 2002; Dorigo and Gambardella,
1997), particle swarm optimization (PSO) (Bratton and Kennedy,
2007), differential evolution (DE) (Das and Suganthan, 2011), estima-
tion of distribution algorithms (EDA) (Pedro and Lozano, 2002),
immune system optimization (Hofmeyr and Forrest, 2000), artificial
bee colony (ABC) optimization (Karaboga and Basturk, 2007), and
many others (Simon, 2013).

Hybrid EAs are attractive alternatives to standard EAs. The
combination of several algorithms in hybrid EAs allows them to
exploit the strength of each algorithm. It has been shown that by
properly selecting the constituent algorithms and hybridization

strategies, hybrid EAs can outperform their constituent algorithms
due to their synergy (Niknam and Farsani, 2010). This characteristic is
a strong motivation for the study of hybrid EAs. Many hybrid EAs
have been proposed to improve performance and to find global
optima (Makeyev et al., 2010; Mongus et al., 2012). Although some of
these improvements are significant, the development of new hybrid
EA strategies is worthy of further investigation.

Current research directions in hybrid EAs involve several major
areas. The first area is the application of hybrid EAs to special types of
optimization problems, such as constrained optimization (Wang et al.,
2009) and multi-objective optimization (Niknam, 2009). The second
area is the application of hybrid EAs to real-world optimization
problems (Liang et al., 2009; Lin et al., 2009). The third area is the
determination of which EAs to combine in a hybrid algorithm (Lozano
and Garcia-Martinez, 2010; Blum et al., 2011). The fourth area is the
determination of how to hybridize a given set of EAs into a single
algorithm (Gen and Lin, in press; Prodhon, 2011); that is, how to
determine the hybridization strategy. The goal of this paper is to
address the fourth research area. In general, we propose the applica-
tion of EA information-sharing ideas to the hybridization of constitu-
ent EAs. That is, just as a single EA uses specific mechanisms to share
information among candidate solutions, we use the same mechanisms
to share information among constituent EAs in a hybrid EA. The
information-sharing mechanism that we propose in this paper is
based on biogeography-based optimization (BBO).
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BBO is an EA that was introduced in 2008 (Simon, 2008, 2011).
It is modeled after the immigration and emigration of species
between habitats. One distinctive feature of BBO is that in each
generation, BBO uses the fitness of each candidate solution to
determine the candidate solution's immigration and emigration
rate. The emigration rate increases with fitness, and the immigra-
tion rate decreases with fitness. BBO has demonstrated good
performance on benchmark functions (Ma, 2010; Boussaïd et al.,
2012). It has also been applied to many real-world optimization
problems, including economic load dispatch (Bhattacharya and
Chattopadhyay, 2010), wireless network power allocation (Boussaїd
et al., 2011, 2013a), flexible job shop scheduling (Rahmati and
Zandieh, 2012), power system optimization (Jamuna and Swarup,
2012), antenna design (Singh et al., 2010), and others (Chatterjee
et al., 2012; Wang and Xu, 2011).

The main contribution of this paper is to propose new EA
hybridization strategies that are based on migration behaviors in
biogeography. We propose biogeography-based hybridization at
both the iteration level and the algorithm level. Although BBO has
already been hybridized with other algorithms, this paper repre-
sents the first time that EAs have been hybridized with each
other using biogeography-based migration. Our motivation for
biogeography-based migration in hybrid EAs is twofold: first, we
note the good performance obtained in past research with BBO;
and second, we note the good performance obtained in past
research with hybrid EAs. Given these two factors, we hypothesize
that hybridization using biogeography-based operations will pro-
vide some advantages over other hybrid EAs. We demonstrate our
hybridization approaches with several recently-developed EAs,
and we analyze the optimization results with statistical tests.

In iteration-level hybridization we combine various EAs with
BBO. In algorithm-level hybridization we combine various EAs
using ideas from biogeography. Note that in algorithm-level
hybridization, we do not necessarily combine a particular EA with
BBO. Instead we use the BBO migration strategy to combine
multiple EAs. In this approach, various EAs are taken as the
baseline algorithms, and then we make use of the migration
mechanism of BBO to adaptively improve the solutions. That is,
the constituent EAs generate offspring individuals each genera-
tion, and then we use the BBO migration operator to exchange
information between these individuals.

The recently developed EAs that we hybridize include covar-
iance matrix adaptation evolution strategy (CMA-ES) (Hansen,
2006; Hansen et al., 2003), stud genetic algorithm (SGA) (Khatib
and Fleming, 1998), self-adaptive differential evolution (SaDE)
(Zhao et al., 2011), 2011 standard particle swarm optimization
(PSO2011) (Omran and Clerc, 2011), PSO with linearly varying
inertia weight (LPSO) (Shi and Eberhart, 1998; Chatterjee and
Siarry, 2006), and PSO with constriction factor (CPSO) (Clerc and
Kennedy, 2002; Eberhart and Shi, 2000). We choose these algo-
rithms because they are some of the most recent and
best-performing EA variants. The six algorithms that we choose
form a representative set rather than a complete set. We
could hybridize many other algorithms besides these six. However,
the goal here is not to be exhaustive, but rather to present a
general biogeography-based hybridization strategy and demon-
strate it on a representative set of constituent algorithms and
benchmarks.

The rest of this paper is organized as follows: Section 2 gives a
brief overview of EAs, including the constituent algorithms used in
the rest of the paper. Section 3 presents our new hybridization
methods. Section 4 tests our new algorithms on the continuous
optimization benchmark functions from the 2013 Congress on
Evolutionary Computation (CEC) and on some real-world traveling
salesman problems, and performs some robustness tests. Section 5
gives conclusions and directions for future research.

2. Evolutionary algorithms

This section presents the basic outlines of the constituent EAs
used in this paper, including CMA-ES, SGA, SaDE, PSO, and BBO.

2.1. Covariance matrix adaptation evolution strategy (CMA-ES)

ES is an evolutionary algorithm based on the ideas of adapta-
tion during recombination, mutation, and selection. There are
many variants of ES, and CMA-ES is a recent ES variant that has
demonstrated good performance (Hansen, 2006; Hansen et al.,
2003). It is a non-elitist algorithm that first samples a number of
new candidate solutions from a multivariate normal distribution
and then updates the sampling distribution using the better
candidate solutions. The update consists of two major mechan-
isms: step size control and covariance matrix adaptation. In step
size control, the length of the path of the most recent iteration
step is adjusted. In covariance matrix adaptation, the likelihood of
successful steps is increased. The time scales of the two updates
are independent. The step size can change fast to allow for fast
convergence to a good solution. The covariance matrix changes on
a slower time scale to maintain stability.

2.2. Stud genetic algorithm (SGA)

GAs are the most popular EAs, and were introduced as a
computational analogy of adaptive biological systems. They are
modeled on natural selection. There are many GA variants, one of
which is the stud GA (SGA) (Khatib and Fleming, 1998). The basic
idea of SGA is to use the best solution in the population as one of
the parents in all recombination operations. That is, instead of
stochastic selection of both parents, only one parent is selected
stochastically, and the other parent is always chosen as the fittest
individual (the stud). The benefits of this GA variation are
improved optimization performance and computational efficiency.

2.3. Self-adaptive differential evolution (SaDE)

DE is a simple evolutionary algorithm that creates new candi-
date solutions by combining the parent solution and several other
candidate solutions. A candidate solution replaces the parent
solution if it has better fitness. This is a greedy selection scheme
that often outperforms traditional evolutionary algorithms. SaDE
is one of the best DE variants (Zhao et al., 2011). It uses a self-
adaptive mechanism on control parameters F and CR. Each
candidate solution in the population is extended with control
parameters F and CR that are adjusted during evolution. Better
values of these control parameters lead to better candidate
solutions, which in turn are more likely to survive the selection
process to produce the next solution and propagate the good
parameter values. SaDE is highly independent of the optimization
problem's characteristics and complexity, and it involves self-
adaptation and learning by experience. SaDE demonstrates con-
sistently good performance on a variety of problems, including
both unimodal and multimodal problems.

2.4. Particle swarm optimization (PSO)

PSO is a swarm optimization algorithm that is inspired by
the collective behavior of a flock of birds or a school of fish. PSO
consists of a swarm of particles moving through the search space
of possible problem solutions. Every particle has a position vector
encoding a candidate solution to the problem and a velocity vector
to update position. PSO relies on the learning strategy of the
particles to guide its search direction. Traditionally, each particle
uses its historical best value and the global best value of the entire
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