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a b s t r a c t

Performance optimization of electrical drives implies a lot of degrees of freedom in the variation of design
parameters, which in turn makes the process overly complex and sometimes impossible to handle for
classical analytical optimization approaches. This, and the fact that multiple non-independent design
parameter have to be optimized synchronously, makes a soft computing approach based on multi-objective
evolutionary algorithms (MOEAs) a feasible alternative. In this paper, we describe the application of the
well known Non-dominated Sorting Genetic Algorithm II (NSGA-II) in order to obtain high-quality Pareto-
optimal solutions for three optimization scenarios. The nature of these scenarios requires the usage of
fitness evaluation functions that rely on very time-intensive finite element (FE) simulations. The key and
novel aspect of our optimization procedure is the on-the-fly automated creation of highly accurate and stable
surrogate fitness functions based on artificial neural networks (ANNs). We employ these surrogate fitness
functions in the middle and end parts of the NSGA-II run ð- hybridizationÞ in order to significantly reduce
the very high computational effort required by the optimization process. The results show that by using
this hybrid optimization procedure, the computation time of a single optimization run can be reduced by
46–72% while achieving Pareto-optimal solution sets with similar, or even slightly better, quality as those
obtained when conducting NSGA-II runs that use FE simulations over the whole run-time of the
optimization process.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

1.1. Motivation

Today, electrical drives account for about 70% of the total
electrical energy consumption in industry and for about 40% of
used global electricity (EMSA). In De Keulenaer et al. (2004) it is
stated that, each year, in the European Union, the amount of
wasted energy that could be saved by increasing the efficiency of
electrical drives is around 200 TWh and for this reason, in 2009, a
European regulation was concluded forcing a gradual increase of
the energy efficiency of electrical drives (European Union, 2009).
However, manufacturers of electrical machines need to take more
than just the efficiency into account to hold their own value in the
global market. To be able to successfully compete, the electrical
drives should be fault-tolerant and should offer easy to control
operational characteristics and compact dimensions. Apart from

these, the most important quality factor is the price. During the
development of an electrical machine, a multi-objective optimiza-
tion approach (Chiong, 2012; Chiong et al., 2012) is required in
order to address all of the above aspects and to find an appropriate
tradeoff between the final efficiency and the cost of the drive.

1.2. State-of-the-art in electrical drive design

In the past, electrical machines were designed by applying a
parameter sweep and calculating a maximum of several hundred
designs (Johansson et al., 1994). Calculating a design actually
means predicting the operational behavior of the electrical drive
for a concrete set of parameter settings. Because of the nonlinear
behavior of the materials involved, such a prediction needs to be
based on time intensive finite element simulations. This, combined
with the need to have an acceptable duration of the overall
analysis, imposed a severe limitation in the number of designs to
be calculated. As such, only major design parameters could be
taken into consideration and only a rather coarse parameter step
size could be applied.
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During the last decade, the use of response surface methodo-
logy (Hwang et al., 207), genetic algorithms (Bianchi and
Bolognani, 1998; Jannot et al., 2011), particle swarm optimization
(del Valle et al., 2008) and other techniques (Russenschuck, 1990)
for the design of electrical machines and the associated electronics
has become state-of-the-art. For a detailed comparisons of these
modern approaches and additional reviews of the state-of-the-art
in electrical drive design, the reader is kindly directed to consult
(Duan et al., 2009; Duan and Ionel, 2011; Skaar and Nilssen, 2003).

Although the above mentioned search methods have proved to
be far more suitable for the task of multi-objective optimization
than basic parameter sweeps, they are still plagued by the huge
execution times incurred by the need to rely on FE simulations
throughout the optimization procedure. The usage of computer
clusters where multiple FE simulations can be performed in
parallel can partially address this problem, but the following
drawbacks still remain severe:

� The FE evaluation of one particular design still takes a long time
and conventional methods need to evaluate each individual
design.

� There are high costs associated with the usage of computer
clustering architectures and various software licenses.

1.3. Our approach

In our attempt to create an efficient optimization framework
for electrical drive design, we are exploiting well known and
widely applied genetic algorithms used for multi-objective opti-
mization. These specialized algorithms are generally able to
efficiently handle several optimization objectives. For us, these
objectives are electrical drive target parameters like efficiency,
cogging torque, total iron losses, etc. In our implementation, the
goal is to minimize all the objectives. If a target needs to be
maximized in the design (e.g. efficiency), during the optimization,
its negative value is taken to be minimized. The FE simulations
required by each fitness function evaluation are distributed over a
high throughput computer cluster system. Although it is able to
evolve electrical drive designs of remarkable high quality, the
major drawback of this initial, and somewhat conventional,
optimization approach (ConvOpt) is that it is quite slow as it
exhibits overall optimization run-times that vary from ≈44 to
≈70 h. As a particular multi-objective genetic algorithm, we
employ the well-known and widely used NSGA-II (Deb et al.,
2002).

One main method aimed at improving the computational time
of a multi-objective evolutionary algorithm that has a very time-
intensive fitness function is to approximate the actual function
through means of metamodels/surrogate models (Santana-Quintero
et al., 2010). These surrogate models can provide a very accurate
estimation of the original fitness function at a fraction of the
computational effort required by the latter. Three very well
documented overviews on surrogate based analysis and optimiza-
tion can be found in Queipo et al. (2005), Forrester et al. (2008)
and Tenne and Goh (2010).

In our case, the idea is to substitute the time-intensive fitness
functions based on FE simulations with very-fast-to-evaluate
surrogates based on highly accurate regression models. The
surrogate models act as direct mappings between the design
parameters (inputs) and the electric drive target values which
should be estimated (outputs). For us, in order to be effective in
their role to reduce overall optimization run-time, the surrogate
models need to be constructed on-the-fly, automatically, during the
run of the evolutionary algorithm. This is because they are quite

specific for each optimization scenario and each target value
(i.e., optimization goal or optimization constraint) that we consider.

In other words, we would like that only individuals
(i.e., electrical drive designs) from the first N generations will be
evaluated with the time-intensive FE-based fitness function. These
initial, FE evaluated, electrical drive designs will form a training set
for constructing the surrogate models. For the remaining genera-
tions, the surrogate models will substitute the FE simulations as
the basis of the fitness function. As our tests show, this yields a
significant reduction in computation time.

The novelty of our research lies in the analysis of how to
efficiently integrate automatically created on-the-fly-surrogate-
models in order to reduce the overall optimization run-time
without impacting the high quality of the electrical drive designs
produced by ConvOpt.

Artificial Neural Networks (ANNs) (Haykin, 1999) are among
the popular methods used for constructing surrogate models
because they possess the universal approximation capability
(Hornik et al., 1989) and they offer parameterization options that
allow for an adequate degree of control over the complexity of the
resulting model. Another advantage of ANNs is the fact that they
are known to perform well on non-linear and noisy data (Paliwal
and Kumar, 2009) and that they have already been successfully
applied in evolutionary computation for designing surrogate
models on several instances (Jin et al., 2004; Hong et al., 2003).
For the purpose of this research, the particular type of ANN we
have chosen to use is the multilayered perceptron (MLP). MLP is a
popular and widely used neural network paradigm that has been
successfully employed to create robust and compact prediction
models in many practical applications (Gupta et al., 2007; Wefky
et al., 2011). However, our choice for the MLP is first and foremost
motivated by the fact that, for our specific modeling requirements,
MLP-bases surrogate models have proved to be both relatively fast
and easy to create as well as extremely accurate.

There is a wide choice of methods available for constructing
surrogate models. In this paper, we describe in details how we
created surrogates based on MLPs, but our hybridization schema
itself is general and suitable for a multitude of modeling methods.
In Section 5.1 we present results obtained with other non-linear
modeling methods that can be used as alternatives for construct-
ing the surrogate models. These modeling methods are, support
vector regression (SVR) (Collobert and Bengio, 2001), RBF net-
works (Buhmann, 2003) and a regression orientated adaptation of
the instance based learning algorithm IBk (Aha et al., 1991). In the
aforementioned section, we also further motivate our current
preference for MLP surrogate models.

Regardless of the modeling method used, the automatic surro-
gate model construction phase involves testing different para-
meter settings (e.g. different number of neurons and learning rates
in the case of MLPs, different values of C and γ in the case of SVR),
yielding many models with different complexities and prediction
behaviors. Given a certain target parameter we propose a new,
automated model selection criterion, aimed at selecting the
best surrogate to be integrated in the optimization process. The
selected surrogate model should deliver the best tradeoff between
smoothness, accuracy and sensitivity, i.e., the lowest possible
complexity with an above-average predictive quality.

The rest of this paper is organized in the following way: Section 2
presents an overview of multi-objective optimization problems
(MOOPs) in general with a special focus on the particular complex-
ities associated with MOOPs encountered in the design and proto-
typing of electrical drives. Section 3 contains a description of our
hybrid optimization procedure (HybridOpt) focusing on the creation
and integration of the MLP surrogate models. Section 4 provides the
description of the experimental setup. Section 5 contains an
evaluation of the performance of the hybrid optimization process
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