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The minimum variance (MV) spectral estimator is a robust high-resolution frequency-
domain analysis tool for short data records. The traditional formulation of the minimum
variance spectral estimation (MVSE) depends on the inverse of a Toeplitz autocorrelation
matrix, for which a fast computational algorithm exists that exploits this structure. This
paper extends the MVSE approach to two data-only formulations linked to the covariance
and modified covariance cases of least-squares linear prediction (LP), which require
inversion of near-to-Toeplitz data product matrices. We show here that the near-to-Toeplitz
matrix inverses in the two new fast algorithms have special representations as sums of
products of triangular Toeplitz matrices composed of the LP parameters of the least-
squares-based formulations. Fast algorithm solutions of the LP parameters have been
published by one of the authors. From these, we develop fast solutions of two least-
squares-based minimum variance spectral estimators (LS-based MVSEs). These new
MVSEs provide additional resolution improvement over the traditional autocorrelation-

based MVSE.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

High-resolution spectral estimation is used to provide
enhanced spectral feature detailing in many practical
applications, such as acoustics, communication, radar,
biomedicine, economics, and many other fields. The
minimum variance spectral estimation (MVSE) was
originally introduced by Capon [1] for use in multi-
dimensional seismic array frequency-wavenumber analy-
sis. Lacoss [2] reformulated Capon’s MVSE for application
to one-dimensional (1-D) time-series analysis. Some
recent work has been done to improve the characteristics
and applications of the MVSE. For example, Krolik and
Eizenman [3] facilitated MVSE for broad-band source
location. Lee and Munson [4] reformulated the spatially
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variant apodization (SVA) as a special version of the MVSE
to implement image reconstruction from partial Fourier
data. Frazho and Sherman [5] discussed the convergence
of the MVSE in a non-stationary noise environment.

The primary disadvantage of the MVSE, as defined later
in Eq. (5), over the more conventional fast Fourier
transform (FFT)-based periodogram is the computational
burden if it must be directly computed. First, the
evaluation of the MVSE involves the calculation of an
inverse autocorrelation matrix, which is computationally
intensive and uses a large amount of memory to store the
matrix, especially if the order is large. Second, the MVSE
has to be evaluated over all frequencies of interest.
Typically, this second operation can be even more
computationally intensive if the number of frequencies
is high. These computational disadvantages were over-
come with the discovery of a fast computational algo-
rithm for evaluating the MVSE. Musicus [6] discovered
that the MVSE denominator could be evaluated efficiently
by exploiting the structure of the inverse Toeplitz
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autocorrelation matrix. The Toeplitz inverse can be
formulated in terms of triangular Toeplitz matrix products
with matrix elements composed of autoregressive (AR)
parameters [7]. However, in practice, the autocorrelation
matrix is unknown and only data samples are available,
which normally requires that the MVSE be evaluated by
first estimating the autocorrelation sequence (ACS) from
the data samples. We consider here alternative formula-
tions of the MVSE in terms of least-squares minimization
of the linear prediction (LP) variance, as discussed in
Sections 2.3 and 2.4. The denominators of these LS-based
MVSEs in the covariance and modified covariance LP cases
(refer to Egs. (11) and (14), respectively) are functions of
near-to-Toeplitz matrix inverses. The inverses of these
near-to-Toeplitz matrices can also be formulated in terms
of triangular Toeplitz matrix products, with matrix
elements composed of the LP algorithm parameters rather
than the AR parameters. The remainder of this section will
introduce the derivation of the two LS-based MVSEs in the
covariance and modified covariance LP cases. Sections 4
and 5 will provide the fast computational solutions for the
LS-based MVSE that exploit the inverse matrices of the
near-to-Toeplitz LS-based data product matrices. The fast
algorithm of the covariance LS-MVSE has been reported
by the authors of this paper [8].

We consider two types of LP approaches to generate
the LP parameters: (1) the covariance LP approach utilizes
separate forward and backward LP estimation and (2) the
modified covariance LP approach employs a combined
forward and backward LP estimation. This leads to two LS-
based MVSE expressions that involve inverses of near-to-
Toeplitz products of data matrices. In this paper, we show
that the near-to-Toeplitz matrix inverses can be formulated
in terms of triangular Toeplitz matrix products composed
of LP parameters. Once the LP parameters are estimated,
these can then be applied to the near-to-Toeplitz matrix
inverse expressions that lead to fast computational
algorithms for evaluating the covariance LS-based MVSE
and the modified covariance LS-based MVSE spectral
density expressions. The two new fast MVSE algorithms
have spectral detail performances that exceed the tradi-
tional autocorrelation-based (ACS-based) MVSE, yet are
just as computationally efficient as the ACS-based MVSE.
The computational complexities of the two fast solutions
of the LS-based MVSE are proportional to p? where p is the
estimator order in this paper, with memory storage
requirements proportional to p, versus a p> computational
efficiency and p? storage requirement if solved by using a
direct inversion approach. In addition, the two fast
algorithms generate all intermediate order LP parameters
from order O to order p, which means all MVSE spectral
plots from order O to order p can be evaluated without
recomputing the LP parameters of all orders.

This paper is organized as follows. Section 2 provides
the basis for the ACS-based MVSE and the two LS-based
MVSEs. This section will also illustrate that the new
LS-based MVSE in either the covariance case or the
modified covariance case has spectral resolution perfor-
mance advantages when compared with the classical
periodogram, the MVSE that uses either the AR Yule-
Walker algorithm or the MVSE that uses the lattice-based

Burg algorithm (Burg-lattice) to estimate the AR para-
meters. Section 2 will also illustrate that (1) the ACS-
based MVSE depends on the inverse of the autocorrelation
matrix with Toeplitz structure, (2) the LS-based MVSE in
the covariance case depends on the inverse of a near-to-
Toeplitz product matrix formed from data matrices, and
(3) the LS-based MVSE in the modified covariance case
also depends on the inverse of an expanded near-to-
Toeplitz product matrix formed from data matrices. In
Section 3, we will summarize the Musicus fast algorithm
for the ACS-based MVSE, which exploits the inverse of the
Toeplitz autocorrelation matrix in terms of products of
triangular Toeplitz matrices and then applies a FFT to
evaluate the denominator of the ACS-based MVSE. In
Sections 4 and 5, we will present the derivations of the
new fast algorithms based on exploiting their special
inverse structures for the near-to-Toeplitz product matrix
formed from data matrices. Finally, Section 6 will
summarize the contributions described in this paper.

2. Autocorrelation-based MVSE and least-squares-
data-based MVSE

2.1. Enhanced performance of least-squares-data-based
MVSE over ACS-based MVSE

The performances of the two new fast algorithms for
the LS-based MVSE in the covariance case and in the
modified covariance case developed in this paper are
illustrated in Fig. 1. In this experiment, a test case is
generated as a combination of both narrow-band and
wide-band signals. A 64-complex-point simulated Dop-
pler radar data set [9] is used to test the resolution
capability of the two new fast solutions for the LS-based
MVSE. The Doppler frequency F, is proportional to (Vf./c)
[10], where V is the radial velocity of an object moving
toward/away from a radar, f. is the carrier frequency
(assumed here as 10GHz), and c is the light speed
3 x 108 m/s). The true spectrum of the test data,
calculated by analytical means, is illustrated in Fig. 1(a).
The frequency axis is expressed as a fraction of the
sampling frequency (f; = 2500 Hz in this simulation). The
five stems at —0.3,—0.1,0.2,0.21 and 0.4 in the fraction of
sampling frequency axis simulate five aircraft flying at
different radial velocities toward or away from the radar.
The two closest stems with highest power at 0.2 and 0.21
fraction of sampling frequency are used to test the
resolution capability of an estimator. The short stem at
0.4 fraction of sampling frequency with lower power is
used to test if an estimator can pick out a weak signal
component among strong noise content. The colored noise
process is created by passing white noise through a filter
(with a truncated cosine shaped frequency response) to
simulate typical low frequency clutter effects due to wind
(10-40m/h) [11], cloud motions (0-100m/h) [12], flying
birds (0-100m/h) [11] and moving traffic on a road
(0-70m/h) [13].

The estimator spectral responses produced from the
64-complex-samples are illustrated in Fig. 1 for order
p = 12. In Fig. 1(b), the Nuttall window has been used to
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