
The Journal of Systems and Software 85 (2012) 974– 980

Contents lists available at SciVerse ScienceDirect

The Journal of Systems and Software

j ourna l ho me page: www.elsev ier .com/ locate / j ss

A fast algorithm for Huffman decoding based on a recursion Huffman tree

Yih-Kai Lin ∗, Shu-Chien Huang, Cheng-Hsing Yang
Department of Computer Science, National Pingtung University of Education, No. 4-18 Minsheng Rd., Pingtung City 90003, Taiwan

a r t i c l e i n f o

Article history:
Received 25 July 2011
Received in revised form
10 November 2011
Accepted 17 November 2011
Available online 1 December 2011

Keywords:
Data compression
Huffman code
Decoding

a b s t r a c t

This paper focuses on the time efficiency of Huffman decoding. In this paper, we utilize numerical inter-
pretation to speed up the decoding process. The proposed algorithm firstly transforms the given Huffman
tree into a recursion Huffman tree. Then, with the help of the recursion Huffman tree, the algorithm has
the possibility to decode more than one symbol at a time if the minimum code length is less than or
equal to half of the width of the processing unit. When the minimum code length is larger than the half
of the width of the processing unit, the proposed method can still increase the average symbols decoded
in one table access (thus speeding up the decoding time). In fact, the experimental results of the test
files show that the average number of decoded symbols at one time for the proposed method ranges
from 1.91 to 2.13 when the processing unit is 10. The experimental comparisons show that, compared
to the conventional binary tree search method and the level-compressed Huffman decoding method, the
decoding time of the proposed method is a great improvement.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

A Huffman code is a minimum redundancy code (Huffman,
1952; Bell et al., 1990; Roman, 1992) used in lossless compres-
sion. For example, Huffman coding is one of the major processing
stages of entropy coding in JPEG (Pennebaker and Mitchell, 1993).
Recently, Huffman code has been used to improve MFCVQ-based
reversible data hiding (Yang et al., 2011). In practice, the effi-
ciency of Huffman decoding is a major issue in the design of
the Huffman decoder. The space efficiency of Huffman decoding
has been studied exhaustively, e.g. Huffman (1952), Hashemian
(1995), Chung and Lin (1997), Chung and Wu (1999) and Lin and
Chung (2000). Hashemian (1995) presented a decoding algorithm
which decodes a symbol in the worst case �(d) time in which
the required memory space ranges from �((n + d) � log 2n �)-bits
to �(2d � log 2n �)-bits, where n is the number of source sym-
bols and d is the depth of the Huffman tree. Later, Lin and
Chung (2000) presented a �(d)-time Huffman decoding algo-
rithm with a memory-efficient data structure, which requires
�((n + d) � log 2n �)-bits of memory space. Hashemian (2004) later
presented an �(t)-time decoding algorithm in which the required
memory space is �((n + 4t)) � log 2n �)-bits where t is the number of
distinct code lengths. Theoretically, t can be 1 up to n.

Since the time efficiency of Huffman decoding has become more
and more important as memory is getting cheaper, and the require-
ments of decoding time are getting stricter, this paper focuses on

∗ Corresponding author. Tel.: +886 8 722 6141x33559; fax: +886 8 721 5034.
E-mail address: yklin@mail.npue.edu.tw (Y.-K. Lin).

the time efficiency of Huffman decoding. The traditional decod-
ing algorithms traverse the path from the root to the leaf node
while scanning the input Huffman stream bit by bit where the left
edge corresponds to ‘1’ and the right edge corresponds to ‘0’. To
improve the decoding time, we utilize numerical interpretation to
speed up the decoding process. In the proposed method, the leaves
of the Huffman tree are rearranged into an array structure. Then
the numerical interpretation of the incoming bit stream is used
to calculate the address of the corresponding source symbols. The
proposed algorithm firstly transforms the given Huffman tree to a
recursion Huffman tree. Then, with the help of the recursion Huff-
man tree, the algorithm has the possibility to decode more than
one symbol at a time if the minimum code length is less than or
equal to half of the width of the processing unit, which is denoted
as z. When the minimum code length is larger than the width of
the processing unit, the proposed method can still speed up the
decoding time. In the proposed method, the width of processing
unit z is a parameter. A large z will make the tree too large for
available memory, but will result in high speed decoding. But, in
practice, the requirement to access large memory usually causes
cache misses. That is, the time of one memory access (including the
time to deal with cache misses) and the number of total memory
accesses shows trade-off characteristics. The experimental work
shows that the fast decoding time of our test files occurs when z is
about 8 among z = 5, 6, 7, 8, 9, 10, 11, 12, 13, and 14. One problem of
reading a block of Huffman stream is that when the length of con-
catenation of some codewords is not a multiple of z, the decoding
algorithm needs to reread some bits from the Huffman stream and
to restart the decoding process. To avoid this problem, a heuristic
strategy is proposed to partially deal with this problem, namely,

0164-1212/$ – see front matter © 2011 Elsevier Inc. All rights reserved.
doi:10.1016/j.jss.2011.11.1019

dx.doi.org/10.1016/j.jss.2011.11.1019
http://www.sciencedirect.com/science/journal/01641212
http://www.elsevier.com/locate/jss
mailto:yklin@mail.npue.edu.tw
dx.doi.org/10.1016/j.jss.2011.11.1019

Y.-K. Lin et al. / The Journal of Systems and Software 85 (2012) 974– 980 975

for each internal node of the top most z level, a special subtree is
created.

Chung and Wu (1999) also utilize the numerical interpretation
of the first d′ bit of a codeword to speed up the decoding, where d′

is the minimum code length. Hashemian (2004) used a Condensed
Huffman Table (CHT) to represent a single side grown Huffman tree.
The algorithm in Hashemian (2004) reads d bits at a time where
d is the maximum code length. Then, at most one symbol can be
decoded after searching at most n − 1 rows of CHT. The comparisons
of the proposed method with Chung and Wu (1999) and Hashemian
(2004) are presented in Section 4.

The major drawback of our approach is the large memory
requirement. However, there are hardware applications where the
block size as well as the number of encoded symbols remain small
since our method performs well for small block sizes. For example,
Kavousianos et al. (2007) use optimal selective Huffman coding to
alleviate the problems of large hardware overhead of the required
decoder for test-data compression in automatic test equipment.
The approach of selective Huffman coding encodes only a few
of the symbols. And each unencoded symbol is preceded by the
‘unencoded’ Huffman codeword. In Kavousianos et al. (2007), the
occurrence frequency of the longest codeword of encoded symbol is
equal to the sum of the occurrence frequencies of all the unencoded
symbols. Thus, the number of Huffman codewords keeps small in
selective Huffman coding. Therefore, our method suits to test-data
compression problems with optimal selective Huffman coding for
decoding time reduction.

2. Preliminaries

Consider the source symbols {s1, s2, . . ., sn} with frequencies
{w1, w2, . . . , wn} for w1 ≥ w2 ≥ . . . ≥ wn, where the symbol si has
frequency wi. Using the Huffman’s algorithm (Huffman, 1952), the
codeword ci for 1 ≤ i ≤ n, which is a binary string, for symbol si can be
obtained. Let us denote by C = {ci, . . . , cn} the Huffman code. Let the
level of the root of the Huffman tree (Huffman, 1952) be zero, and
the level of the other node be equal to adding one and its parent’s
level. Codeword length li for si can be known as the level of si. For
example, a Huffman tree corresponding to the source symbols {s1,
s2, . . ., s7} with the frequencies {17, 8, 7, 6, 3, 1, 1} is shown in Fig. 1,

1

1 0

0

level 0

level 4

level 3

level 2

level 1

level 5

1

1

1

0

0

0

1 0

s7 s6

s1

s3 s2s4

s5

Fig. 1. An example of a Huffman tree.

and we have the two ordered sets <c1, c2, c3, c4, c5, c6, c7> = < 0, 100,
101, 111, 1100, 11010, 11011 > and <l1, l2, l3, l4, l5, l6, l7> = < 1, 3, 3,
3, 4, 5, 5 >.

Assume the right edge corresponds to ‘0’ and the left edge corre-
sponds to ‘1’. The codeword of a node i, denoted c(i), is defined as the
bit sequence corresponding to the path from the root to node i. The
codeword of a subtree Ti, denoted c(Ti), is defined as the codeword
of Ti’s root. The level of a subtree Ti, denoted l(Ti), is defined as the
level of Ti’s root. Given a string x = x1x2 · · · xm, we define the ith pre-
fix of x, for i = 1, . . ., m, as prefixi(x) = x1x2 · · · xi and prefix0(x) = � is
an empty string. For example, if x = 001011, then prefix5(x) = 00101.

In this paper, we assume that the computing architecture can
manipulate one z-bits computer word at a time. In other words,
we can compare the numerical interpretation of two codewords in
constant time.

3. Decoding multiple symbols at once

In this section, we present the proposed decoding algorithm.
We first transform the Huffman tree into a recursion Huffman tree,
then present a decoding algorithm benefiting from the recursion
Huffman tree. Given a Huffman tree called initial Huffman tree T, a

1 0

1 0

1 0

1 0

1 0

1 0 1 0

1 0 1 0 1 0

(a)

1 0

1 0

1 0

1 0

1 0
1

1

1

0

0

1 0

1 0

1 0

(b)

1 0 1 0

0

01

s4 s4s1

s1s1
s1

s2s1
s2s3s1

s3s5

s7s1
s6s1

s7 s6

s4

T2
T1

s3 s2

s5

s6s7

T3

T0

s1

s2s3s4

T4

s2s3s4

T4

s1

T2

T0

T1

T3

Fig. 2. Procedure for forming a recursion Huffman tree. (a) Five subtrees cut from the Huffman tree are shown in Fig. 1. (b) The initial Huffman tree is recursively appended
onto the leaves of each subtree and nodes with a level higher than z are deleted from each subtree.

https://isiarticles.com/article/78993

