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a b s t r a c t

Relational fuzzy c-means (RFCM) is an algorithm for clustering objects represented in a pairwise
dissimilarity values in a dissimilarity data matrix D. RFCM is dual to the fuzzy c-means (FCM) object data
algorithm when D is a Euclidean matrix. When D is not Euclidean, RFCM can fail to execute if it
encounters negative relational distances. To overcome this problem we can Euclideanize the relation D
prior to clustering. There are different ways to Euclideanize D such as the β-spread transformation. In
this article we compare five methods for Euclideanizing D to ~D. The quality of ~D for our purpose is
judged by the ability of RFCM to discover the apparent cluster structure of the objects underlying the
data matrix D. The subdominant ultrametric transformation is a clear winner, producing much better
partitions of ~D than the other four methods. This leads to a new algorithm which we call the improved
RFCM (iRFCM).

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Consider a set of objects O¼ fo1;⋯; ong, where the goal is to
group them into c natural groups. Objects can be described by
feature vectors X ¼ fx1;…; xngAℝp such that xi is an attribute
vector of dimension p representing object oi. Alternatively, objects
can be represented using a pairwise relationship. The relationships
are stored in a relational matrix R, where R¼ ½rij� measures the
relationship between oi and oj. If R is a dissimilarity relation
denoted by D¼ ½dij�, then it must satisfy the following three
conditions:

dii ¼ 0 for i¼ 1;⋯;n; ð1aÞ

dijZ0 for i¼ 1;⋯;n and j¼ 1;⋯;n; and ð1bÞ

dij ¼ dji for i¼ 1;⋯;n and j¼ 1;⋯;n; ð1cÞ

where condition (1a) is self-dissimilarity, (1b) is non-negativity
and (1c) is symmetry. A well-known relational clustering algo-
rithm that is suitable for clustering objects described by D is the
relational fuzzy c-means (RFCM) proposed in [1] (Algorithm 1).
RFCM, the relational dual of the FCM algorithm, takes an input
dissimilarity matrix D and outputs a fuzzy partition matrix
UAMfcn, where

Mfcn ¼ U A ℝc�njuikA ½0;1�; ∑
n

k ¼ 1
uik40;

(

∑
c

i ¼ 1
uik ¼ 1; 8 1r irc and 1rkrn

)
ð2Þ

Algorithm 1. Relational fuzzy c-means (RFCM) [1]

1 Input: D, c, fuzzifier m41 (default m¼ 2), tmax (default
tmax ¼ 100), ε (default ε¼ 0:0001)

2 Output: U, VR

3 Initialize: step¼ε, t¼1
4 Relational cluster centers V0

R ¼ ðv0R;1; v0R;2;⋯; v0R;cÞ,
v0R;iAℝn

Note: we use c randomly chosen rows of D as initial
centers.

5 while tr tmax and step Zε

6 dR;ik ¼ ðDvt�1
R;i Þk�

1
2
ðvt�1

R;i ÞTDvt�1
R;i for 1r irc and 1rkrn (3)

7 for k¼1 to n
8 if dR;ika0 for all i

9
uik ¼ 1=

dR;ik
∑c

j ¼ 1dR;ik

 !1=m�1

; 8 i
(4)

10 else
11 Set uik40 for dR;ik ¼ 0, uikA ½0; 1� and ∑c

j ¼ 1ujk ¼ 1

12 endif
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13 endfor
14 vtR;i ¼ ðum

i1;⋯;um
inÞ= ∑

n

k ¼ 1
um
ik for 1r irc

(5)

15 step’ max
1r ir c
1r jr n

fjV ðtÞ
R �V ðt�1Þ

R jg

16 t’tþ1
17 endwhile

The duality relationship between RFCM and FCM is based on
the squared Euclidean distance or 2-norm that defines the
dissimilarity dij between two feature vectors xi and xj describing
oi and oj and the dissimilarity between the cluster center vi and oj.
In other words, RFCM assumes that

D¼ ½dij� ¼ ½jjxi�xjjj22� ð6Þ

The relation D¼ ½dij� is Euclidean if there exists feature vectors
X ¼ fx1;…; xngAℝp with an embedding dimension pon, such that
for all i,j dij ¼ jjxi�xjjj22. When D is Euclidean, it has a realization in
some Euclidean space. In this case, RFCM and FCM will produce the
same partition of relational and feature vector representation of the
data. If D is not Euclidean, RFCM will still find clusters in any D
whose entries satisfy (1) as long as it can execute, but in this case it
is possible for RFCM to experience an execution failure. This happens
when the relational distances between prototypes and objects dR;ik
in Eq. (3) become negative for some i and k (Algorithm 1, line 6).
Another important observation about RFCM is that it expects
squared dissimilarities D. If the dissimilarities are not squared,

meaning that we have
ffiffiffiffi
D

p
instead of D such that

ffiffiffiffi
D

p
¼D1=2 ¼

½
ffiffiffiffiffi
dij

q
�, then the dissimilarities must be squared before clustering

using RFCM so that D is the Hadamard product D¼ ð
ffiffiffiffi
D

p
Þ2. Through-

out this paper D is assumed to contain squared dissimilarities.
Non-Euclidean Relational Fuzzy c-Means (NERFCM), repairs

RFCM “on the fly” with a self-healing property that automatically
adjusts the values of dR;ik and the dissimilarities in D in case of
failure [2]. The self-healing property is based on the β-spread,
which works by adding a positive constant β to the off-diagonal
elements of D. In fact, there exists β0 such that the β-spread
transformed matrix Dβ is Euclidean for all βZβ0. The parameter β
controls the amount spreading and must be as small as possible to
minimize unnecessary dilation that distorts the original D, which
in turn may result in the loss of cluster information. The exact
value of β0 is the largest positive eigenvalue of the matrix PDP,
where P ¼ I�ð1=nÞð11T Þ and I is n�n identity matrix. Eigenvalue
computation is avoided by the self-healing module, which is
invoked during execution only when needed. When activated, this
module adjusts the current D by adding a minimal β-spread to its
all off-diagonal elements.

An alternative to using NERFCM is to transform the matrix D by a
mapping that converts it to Euclidean form (we call this operation
“Euclideanizing D”), and then running RFCM on the Euclideanized
matrix ~D. This approach guarantees that RFCM will not fail since ~D
is already Euclidean. There are at least five ways to Euclideanize D,
including the β-spread transformation. In addition to the β-spread
transformation, this paper will study the other four Euclideaniza-
tion approaches indicated under option 1 in Fig. 1. As a result of this
study, we will append an “i” (short for the word “improved”) to
RFCM, but not to NERFCM, which is NOT altered by these results.
We hope to write a companion paper to this one that discusses
improvements to NERFCMwhich would then become iNERFCM, but
attempts to find an alternative to the current “self-healing” method
described in [2] which is NERFCM have so far met stiff resistance.

Fig. 1. Possible solutions RFCM can utilize when input D is non-Euclidean.
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