
Applying agglomerative hierarchical clustering algorithms to component
identification for legacy systems

Jian Feng Cui a, Heung Seok Chae b,⇑
a Department of Computer Science and Technology, Xiamen University of Technology, 600 LiGong Rd., Xiamen 361024, China
b Department of Science and Engineering, Pusan National University, 30 Changjeon-dong, Keumjeong-gu, Busan 609-735, South Korea

a r t i c l e i n f o

Article history:
Received 23 January 2010
Received in revised form 9 January 2011
Accepted 15 January 2011
Available online 23 January 2011

Keywords:
Component identification
Agglomerative hierarchical clustering
algorithm
Weighting scheme
Similarity measure
Legacy systems
Software reengineering

a b s t r a c t

Context: Component identification, the process of evolving legacy system into finely organized compo-
nent-based software systems, is a critical part of software reengineering. Currently, many component
identification approaches have been developed based on agglomerative hierarchical clustering algo-
rithms. However, there is a lack of thorough investigation on which algorithm is appropriate for compo-
nent identification.
Objective: This paper focuses on analyzing agglomerative hierarchical clustering algorithms in software
reengineering, and then identifying their respective strengths and weaknesses in order to apply them
effectively for future practical applications.
Method: A series of experiments were conducted for 18 clustering strategies combined according to var-
ious similarity measures, weighting schemes and linkage methods. Eleven subject systems with different
application domains and source code sizes were used in the experiments. The component identification
results are evaluated by the proposed size, coupling and cohesion criteria.
Results: The experimental results suggested that the employed similarity measures, weighting schemes
and linkage methods can have various effects on component identification results with respect to the
proposed size, coupling and cohesion criteria, so the hierarchical clustering algorithms produced quite
different clustering results.
Conclusions: According to the experimental results, it can be concluded that it is difficult to produce per-
fectly satisfactory results for a given clustering algorithm. Nevertheless, these algorithms demonstrated
varied capabilities to identify components with respect to the proposed size, coupling and cohesion
criteria.

� 2011 Elsevier B.V. All rights reserved.

1. Introduction

Legacy systems are software systems that cannot be easily dealt
with but are vital to our organizations [1]. Legacy systems continue
to be used because of the prohibitive cost of replacing or redesign-
ing them, despite their poor competitiveness and compatibility
with modern equivalents [2]. The evolution of a legacy system is
a complex task, which is influenced by several concerns (e.g. its
decomposability, budget, technical and time constraints, etc.) [3].
A key activity in software reengineering consists of gathering the
software entities comprising the system into meaningful (highly
cohesive) and independent (loosely coupled) components; this is
called component identification. The common process of compo-
nent identification starts by parsing the source code of a legacy
system, and then the source code is organized into cohesive sub-
systems that are loosely interconnected by a particular clustering

algorithm [11]. According to [5], a component specifies a formal
contract of services that it provides to its clients and those that it
requires from other components or services in the system in the
terms of its interfaces. In terms of object-oriented software sys-
tems, a component consists of a set of member classes and inter-
faces which specify their services.

Agglomerative hierarchical clustering algorithms have been ap-
plied in many existing component identification approaches, be-
cause a multi-level architectural view produced by agglomerative
hierarchical clustering algorithms facilitates architectural under-
standing [4,7,8,10]. Understanding the behaviors of employed clus-
tering algorithms is the first important step for meaningful
utilization of clustering techniques for component identification
[6]. The similarity measure and linkage method are the two most
important factors in the agglomerative hierarchical clustering
algorithms studied by many researchers. In object-oriented sys-
tems, the calculation of connection strength between software
entities, which is also known as weighting scheme, are affected
by the connection manners between software entities. Weighting

0950-5849/$ - see front matter � 2011 Elsevier B.V. All rights reserved.
doi:10.1016/j.infsof.2011.01.006

⇑ Corresponding author. Tel.: +82 51 510 3517; fax: +82 51 515 2208.
E-mail address: hschae@pusan.ac.kr (H.S. Chae).

Information and Software Technology 53 (2011) 601–614

Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier .com/locate / infsof

http://dx.doi.org/10.1016/j.infsof.2011.01.006
mailto:hschae@pusan.ac.kr
http://dx.doi.org/10.1016/j.infsof.2011.01.006
http://www.sciencedirect.com/science/journal/09505849
http://www.elsevier.com/locate/infsof

schemes can have significant effects on clustering behaviors, but
most of them just focused on binary feature values [7,8,10,35]. In
this paper, we classified weighting schemes as binary weighting
scheme, absolute weighting scheme and relative weighting
scheme. We performed a series of experiments to examine their
performances.

Agglomerative hierarchical clustering algorithms have been
widely employed in software clustering techniques, however,
many researches merely focused on proposing an approach to solv-
ing a particular problem [16]. In this paper, we performed a study
on evolving object-oriented legacy systems into component-based
systems by using a variety of agglomerative hierarchical clustering
methods which employed various similarity measures, linkage
methods and weighting schemes. The goal of this paper is to exam-
ine whether there is a superior method in the clustering process. A
series of experiments were conducted with various clustering algo-
rithms for several object-oriented legacy systems. Based on the
clustering results, we provided an evaluation of the relative
strengths and weaknesses of various agglomerative hierarchical
clustering algorithms by using a set of criteria with respect to
the size, coupling and cohesion criteria. Our focus is on analyzing
agglomerative hierarchical clustering algorithms in software reen-
gineering, and then identifying their respective strengths and
weaknesses in order to apply them effectively for future practical
applications.

The rest of this paper is organized as follows. Section 2 gives an
overview of agglomerative hierarchical clustering algorithms. Sec-
tion 3 illustrates the similarity measures and weighting schemes
used for agglomerative hierarchal clustering. Section 4 presents
the experimental settings: the tool CIETool developed for automat-
ing the process of component identification and evaluation, the
clustering strategies, the criteria used for evaluating the clustering
results and the employed subject systems. In Section 5, we present
the clustering results and evaluate them with the proposed size,
coupling and cohesion criteria. Section 6 discusses related work. Fi-
nally, Section 7 summarizes our study and provides suggestions for
future work.

2. An overview of agglomerative hierarchical clustering
algorithms

In this section, we provide an overview of agglomerative hierar-
chical clustering algorithms and illustrate how they are utilized for
software component identification. The agglomerative hierarchical
clustering algorithms (AHCA) start from a set of individual entities
that are first grouped into small clusters; these are in turn grouped
into larger clusters until reaching a final all inclusive clustering [8].
One advantage of these algorithms is that they are non-supervised.
They do not need any extra information such as the number of ex-
pected clusters and candidate regions of search space for locating
each cluster. AHCA provides a view for software clustering; the
earlier iterations present a detailed view of the software architec-
ture and the later ones present a high-level view.

When AHCA is utilized for software component identification,
the first problem that needs to be addressed is to determine the
types of entities to be clustered. In this study, our aim is to reengi-
neer an object-oriented legacy system into a component-based
system. Classes are treated as the entities to be clustered, because
they are the fundamental parts comprising an object-oriented soft-
ware system. Interface classes and abstract classes are ignored, be-
cause they generally contribute to system structures construction
rather than concrete functions realization. The inner class is also
ignored, because it is nested in a regular outer class and it is natu-
rally viewed as a member of latter. In this paper, we call the types
of classes under study normal classes. For simplicity, all usage of the

term class refers to the normal classes hereinafter unless otherwise
indicated in this paper.

Generally a software system is composed of a set of classes and
various relations. Classes can be thought of as the nodes in a graph
and their relations as the edges in this graph. Fig. 1 shows an exam-
ple system represented by an undirected graph.

Classes can be connected by various relations within a software
system. In this study, we define two classes clsi and clsj to be con-
nected if and only if at least one of the following connections exists
between them:

� attr is an attribute of clsi, and clsj is the type of attr;
� op is an operation of clsi, and clsj is the type of a parameter of op,

or the return type of op;
� op is an operation of clsi, and clsj is the type of a local variable of

op;
� op is an operation of clsi, and clsj is the type of a parameter of an

operation invoked by op;
� op is an operation of clsi, attr is an attribute of clsj, and op refer-

ences attr;
� op is an operation of clsi, op0 is an operation of clsj, and op

invokes op0.

In addition, the classes can be distinguished by their invocation
directions. For example, in the above statements, clsi is the access-
ing class, and clsj is the accessed class. Considering inheritance, in
this study, we just consider implemented attributes and operations
for classes. That is, a parent class connecting some class does not
necessarily mean that its child class also connects that class.

Throughout this paper the following notations are used to de-
scribe a software system:

� Assuming that UC denotes the set of classes in a software sys-
tem S, then |UC| is the number of classes of S.
� Classes can be grouped into different components. Let C-

SET(cmp) denote the set of classes in the comp onent cmp. We
suppose that CSET(cmpm) \ CSET(cmpn) = Ø, if m – n.
� A software system can be partitioned into a set of components.

Let UCMP denote the set of components that compose a soft-
ware system. Suppose that the system S is composed of t com-
ponents, then |UCMP| = t.
� Let conn(clsi, clsj) denote the set of connections between classes

clsi and clsj, where clsi is the accessing class and clsj is the
accessed class.
� Let conn(cmpi, cmpj) denote the set of connections between

components cmpi and cmpj, where cmpi is the accessing compo-
nent and cmpj is the accessed component, which are deter-
mined by the invocation direction of the classes in the
corresponding components.

Fig. 2 illustrates clustering of AHCA. AHCA accepts the set of
individual classes UC of the software system S as the input. A given
similarity measure is necessary to quantitatively calculate the sim-
ilarity between each pair of classes. UCMP is the set of components.
Initially, each element of UCMP contains an individual class of the

cls2

cls4 cls8cls6

cls7

cls5

cls3cls1

Fig. 1. An example system.

602 J.F. Cui, H.S. Chae / Information and Software Technology 53 (2011) 601–614

https://isiarticles.com/article/79049

