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a b s t r a c t

K-means is undoubtedly the most widely used partitional clustering algorithm. Unfortunately, due to its
gradient descent nature, this algorithm is highly sensitive to the initial placement of the cluster centers.
Numerous initialization methods have been proposed to address this problem. In this paper, we first
present an overview of these methods with an emphasis on their computational efficiency. We then com-
pare eight commonly used linear time complexity initialization methods on a large and diverse collection
of data sets using various performance criteria. Finally, we analyze the experimental results using non-
parametric statistical tests and provide recommendations for practitioners. We demonstrate that popular
initialization methods often perform poorly and that there are in fact strong alternatives to these
methods.

� 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Clustering, the unsupervised classification of patterns into
groups, is one of the most important tasks in exploratory data anal-
ysis (Jain, Murty, & Flynn, 1999). Primary goals of clustering in-
clude gaining insight into data (detecting anomalies, identifying
salient features, etc.), classifying data, and compressing data. Clus-
tering has a long and rich history in a variety of scientific disci-
plines including anthropology, biology, medicine, psychology,
statistics, mathematics, engineering, and computer science. As a
result, a plethora of clustering algorithms have been proposed
since the early 1950s (Jain, 2010).

Clustering algorithms can be broadly classified into two groups:
hierarchical and partitional (Jain, 2010). Hierarchical algorithms
recursively find nested clusters either in a top-down (divisive) or
bottom-up (agglomerative) fashion. In contrast, partitional algo-
rithms find all the clusters simultaneously as a partition of the data
and do not impose a hierarchical structure. Most hierarchical algo-
rithms have quadratic or higher complexity in the number of data
points (Jain et al., 1999) and therefore are not suitable for large data
sets, whereas partitional algorithms often have lower complexity.

Given a data set X ¼ fx1;x2; . . . ;xNg in RD, i.e. N points (vectors)
each with D attributes (components), hard partitional algorithms
divide X into K exhaustive and mutually exclusive clusters
P ¼ fP1; P2; . . . ; PKg;

SK
i¼1Pi ¼ X ; Pi \ Pj = ; for 1 6 i – j 6 K. These

algorithms usually generate clusters by optimizing a criterion
function. The most intuitive and frequently used criterion function
is the Sum of Squared Error (SSE) given by:

SSE ¼
XK

i¼1

X
xj2Pi

kxj � cik2
2 ð1Þ

where k�k2 denotes the Euclidean ðL2Þ norm and ci ¼ 1=jPij
P

xj2Pi
xj

is the centroid of cluster Pi whose cardinality is jPij. The optimiza-
tion of (1) is often referred to as the minimum SSE clustering
(MSSC) problem.

The number of ways in which a set of N objects can be parti-
tioned into K non-empty groups is given by Stirling numbers of
the second kind:

SðN;KÞ ¼ 1
K!

XK

i¼0

ð�1ÞK�i K

i

� �
iN ð2Þ

which can be approximated by KN/K! It can be seen that a complete
enumeration of all possible clusterings to determine the global min-
imum of (1) is clearly computationally prohibitive except for very
small data sets (Kaufman & Rousseeuw, 1990). In fact, this non-con-
vex optimization problem is proven to be NP-hard even for K = 2
(Aloise, Deshpande, Hansen, & Popat, 2009) or D = 2 (Mahajan,
Nimbhorkar, & Varadarajan, 2012). Consequently, various heuristics
have been developed to provide approximate solutions to this prob-
lem (Tarsitano, 2003). Among these heuristics, Lloyd’s algorithm
(Lloyd, 1982), often referred to as the (batch) k-means algorithm,
is the simplest and most commonly used one. This algorithm starts
with K arbitrary centers, typically chosen uniformly at random from
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the data points. Each point is assigned to the nearest center and
then each center is recalculated as the mean of all points assigned
to it. These two steps are repeated until a predefined termination
criterion is met.

The k-means algorithm is undoubtedly the most widely used
partitional clustering algorithm (Jain et al., 1999; Jain, 2010). Its
popularity can be attributed to several reasons. First, it is concep-
tually simple and easy to implement. Virtually every data mining
software includes an implementation of it. Second, it is versatile,
i.e. almost every aspect of the algorithm (initialization, distance
function, termination criterion, etc.) can be modified. This is evi-
denced by hundreds of publications over the last fifty years that
extend k-means in various ways. Third, it has a time complexity
that is linear in N, D, and K (in general, D� N and K� N). For this
reason, it can be used to initialize more expensive clustering algo-
rithms such as expectation maximization (Bradley & Fayyad,
1998), DBSCAN (Dash, Liu, & Xu, 2001), and spectral clustering
(Chen, Song, Bai, Lin, & Chang, 2011). Furthermore, numerous
sequential (Kanungo et al., 2002; Hamerly, 2010) and parallel
(Chen & Chien, 2010) acceleration techniques are available in the
literature. Fourth, it has a storage complexity that is linear in N,
D, and K. In addition, there exist disk-based variants that do not re-
quire all points to be stored in memory (Ordonez & Omiecinski,
2004). Fifth, it is guaranteed to converge (Selim & Ismail, 1984)
at a quadratic rate (Bottou & Bengio, 1995). Finally, it is invariant
to data ordering, i.e. random shufflings of the data points.

On the other hand, k-means has several significant disadvan-
tages. First, it can only detect compact, hyperspherical clusters that
are well separated. This can be alleviated by using a more general
distance function such as the Mahalanobis distance, which permits
the detection of hyperellipsoidal clusters (Mao & Jain, 1996). Sec-
ond, due its utilization of the squared Euclidean distance, it is sen-
sitive to noise and outlier points since even a few such points can
significantly influence the means of their respective clusters. This
can addressed by outlier pruning (Zhang & Leung, 2003) or using
a more robust distance function such as City-block ðL1Þ distance.
Third, due to its gradient descent nature, it often converges to a lo-
cal minimum of the criterion function (Selim & Ismail, 1984). For
the same reason, it is highly sensitive to the selection of the initial
centers. Adverse effects of improper initialization include empty
clusters, slower convergence, and a higher chance of getting stuck
in bad local minima (Celebi, 2011). Fortunately, all of these draw-
backs except for the first one can be remedied by using an adaptive
initialization method (IM).

In this study, we investigate some of the most popular IMs
developed for the k-means algorithm. Our motivation is threefold.
First, a large number of IMs have been proposed in the literature
and thus a systematic study that reviews and compares these
methods is desirable. Second, these IMs can be used to initialize
other partitional clustering algorithms such as fuzzy c-means and
its variants and expectation maximization. Third, most of these
IMs can be used independently of k-means as standalone cluster-
ing algorithms.

This study differs from earlier studies of a similar nature (Pena,
Lozano, & Larranaga, 1999; He, Lan, Tan, Sung, & Low, 2004) in sev-
eral respects: (i) a more comprehensive overview of the existing
IMs is provided, (ii) the experiments involve a larger set of meth-
ods and a significantly more diverse collection of data sets, (iii)
in addition to clustering effectiveness, computational efficiency is
used as a performance criterion, and (iv) the experimental results
are analyzed more thoroughly using non-parametric statistical
tests.

The rest of the paper is organized as follows. Section 2 presents
a survey of k-means IMs. Section 3 describes the experimental set-
up. Section 4 presents the experimental results, while Section 5
gives the conclusions.

2. Initialization methods for k-means

In this section, we briefly review some of the commonly used
IMs with an emphasis on their time complexity (with respect to
N). In each complexity class, methods are presented in chronolog-
ically ascending order.

2.1. Linear time-complexity initialization methods

Forgy’s method (Forgy, 1965) assigns each point to one of the K
clusters uniformly at random. The centers are then given by the
centroids of these initial clusters. This method has no theoretical
basis, as such random clusters have no internal homogeneity
(Anderberg, 1973).

Jancey’s method (Jancey, 1966) assigns to each center a syn-
thetic point randomly generated within the data space. Unless
the data set fills the space, some of these centers may be quite dis-
tant from any of the points (Anderberg, 1973), which might lead to
the formation of empty clusters.

MacQueen (1967) proposed two different methods. The first
one, which is the default option in the Quick Cluster procedure
of IBM SPSS Statistics (Norušis, 2011), takes the first K points in
X as the centers. An obvious drawback of this method is its sensi-
tivity to data ordering. The second method chooses the centers
randomly from the data points. The rationale behind this method
is that random selection is likely to pick points from dense regions,
i.e. points that are good candidates to be centers. However, there is
no mechanism to avoid choosing outliers or points that are too
close to each other (Anderberg, 1973). Multiple runs of this method
is the standard way of initializing k-means (Bradley & Fayyad,
1998). It should be noted that this second method is often mistak-
enly attributed to Forgy (1965).

Ball and Hall’s method (Ball & Hall, 1967) takes the centroid of
X , i.e. X ¼ 1=N

PN
j¼1xj, as the first center. It then traverses the

points in arbitrary order and takes a point as a center if it is at least
T units apart from the previously selected centers until K centers
are obtained. The purpose of the distance threshold T is to ensure
that the seed points are well separated. However, it is difficult to
decide on an appropriate value for T. In addition, the method is
sensitive to data ordering.

The Simple Cluster Seeking method (Tou & Gonzales, 1974) is
identical to Ball and Hall’s method with the exception that the first
point in X is taken as the first center. This method is used in the
FASTCLUS procedure of SAS (SAS Institute Inc., 2009).

Späth’s method (Späth, 1977) is similar to Forgy’s method with
the exception that the points are assigned to the clusters in a cycli-
cal fashion, i.e. the j-th (j 2 {1,2, . . . ,N}) point is assigned to the
(j � 1modK + 1)-th cluster. In contrast to Forgy’s method, this
method is sensitive to data ordering.

Maximin method (Gonzalez, 1985; Katsavounidis, Kuo, &
Zhang, 1994) chooses the first center c1 arbitrarily and the i-th
(i 2 {2,3, . . . ,K}) center ci is chosen to be the point that has the
greatest minimum-distance to the previously selected centers,
i.e. c1,c2, . . . ,ci�1. This method was originally developed as a
2-approximation to the K-center clustering problem.1 It should be
noted that, motivated by a vector quantization application, Katsavo-
unidis et al.’s variant (Katsavounidis et al., 1994) takes the point with
the greatest Euclidean norm as the first center.

Al-Daoud’s density-based method (Al-Daoud & Roberts, 1996)
first uniformly partitions the data space into M disjoint hyper-
cubes. It then randomly selects K Nm/N points from hypercube m
(m 2 {1,2, . . . ,M}) to obtain a total of K centers (Nm is the number

1 Given a set of N points in a metric space, the goal of K-center clustering is to find K
representative points (centers) such that the maximum distance of a point to a center
is minimized.
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