
The Journal of Systems and Software 102 (2015) 182–191

Contents lists available at ScienceDirect

The Journal of Systems and Software

journal homepage: www.elsevier.com/locate/jss

Load-prediction scheduling algorithm for computer simulation of

electrocardiogram in hybrid environments

Wenfeng Shen a,∗, Zhaokai Luo a, Daming Wei a,b, Weimin Xu a, Xin Zhu c

a School of Computer Engineering and Science, Shanghai University, Computer Building, 333 Nanchen Road, Shanghai, 200444, China
b Graduate School of Medicine, Tohoku University, Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
c Biomedical Information Technology Lab, The University of Aizu, Aizu-Wakamatsu, Fukushima 965-8580, Japan

a r t i c l e i n f o

Article history:

Received 8 March 2014

Revised 4 December 2014

Accepted 7 January 2015

Available online 15 January 2015

Keywords:

Computer simulation of ECG

Load-Prediction Scheduling

Sliding Window Mechanism

a b s t r a c t

This paper proposes an algorithm that allows fully utilize the Central Processing Unit–Graphics Processing

Unit (CPU–GPU) hybrid architecture to conduct parallel computation and reasonable scheduling for com-

puter simulation of electrocardiogram (ECG). This algorithm is realized by accelerating calculation speed and

increasing platform adaptability of the parallel algorithm.

Today, many algorithms have been proposed to dynamically schedule a set of tasks in CPU–GPU hybrid

environments. Among these scheduling algorithms, only Pure Self-Scheduling (PSS) algorithm can achieve

load balancing in such an extremely heterogeneous environment. However, Pure Self-Scheduling can neither

fully exploit the advantages of GPU performance, nor efficiently minimize the dynamic scheduling overhead.

In this paper, Load-Prediction Scheduling (LPS) has been introduced to solve the aforementioned problems.

Furthermore, to meet the demand for the best performance in a hybrid environment, which is formed by

many heterogeneous computers, we propose an approach to adjust scheduling parameters dynamically. In

order to validate our parallel algorithm and scheduling approach, we performed ECG simulation to confirm

the efficiency and accuracy of ECG simulation algorithms based on the proposed method. At first, LPS predicts

the workloads of each step in the simulation. The prediction results help to schedule heavy workloads to

components with strong computational ability and light workloads to components with weak computational

ability. LPS also synthesizes dynamic-scheduling and static-scheduling methods to minimize the disadvan-

tages of these two scheduling methods. In the meantime, a Sliding Window Mechanism (SWM) adjusts the

boundary between dynamic-scheduling and static-scheduling to make LPS perform better in hybrid environ-

ments. Experimental results of LPS on the computer simulation of ECG show that the LPS algorithm is more

efficient than PSS. The ECG simulation is improved by about 20 times by using our proposed method. The ECG

simulation of LPS with SWM is about 21% faster than that without SWM.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

With rapid development of computer technologies, especially

multi-core technology, the computational capacity of the CPU is in-

creasing dramatically. Furthermore, the emergence of Graphics Pro-

cessing Unit (GPU) upgrades computing node’s computing ability.

Many researchers have developed methods to accelerate computing

speed by the means of a GPU. For example, Sato et al. employed

the GPU to accelerate the simulations of electrical wave propagation

in myocardium, and achieved a computational speed that was 30

times faster than that achieved with a single 2.0 GHz AMD Opteron

processor for 2D tissue simulations (Sato et al., 2009). Han et al.

∗ Corresponding author. Tel.: +86 021 66135375; fax: +86 021 66135517.

E-mail address: wfshen@mail.shu.edu.cn (W. Shen).

presented a high-performance software router framework for gen-

eral packet processing with GPU acceleration (Han et al., 2010). In the

meantime, many researchers are also developing methods to fully

harness the computational power of CPU and GPU simultaneously.

Feichtinger et al. have addressed the issue wherein sustaining a large

fraction of single GPU performance in parallel computations is con-

sidered a major problem of GPU-based clusters in the context of a

lattice Boltzmann flow solver (Feichtinger et al., 2011). Their multi-

GPU implementation uses a block-structured MPI parallelization and

it is suitable for load balancing and heterogeneous computations on

CPUs and GPUs (Feichtinger et al., 2011).

Recently, to fully combine the computing power of various

accelerating components, high performance computing clusters have

increasingly embraced GPU–CPU heterogeneous architectures. To ex-

ploit the computing power of both CPU and GPU, many research

teams have studied accelerating computing speed with CPU and GPU.

http://dx.doi.org/10.1016/j.jss.2015.01.015

0164-1212/© 2015 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.jss.2015.01.015
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2015.01.015&domain=pdf
mailto:wfshen@mail.shu.edu.cn
http://dx.doi.org/10.1016/j.jss.2015.01.015


W. Shen et al. / The Journal of Systems and Software 102 (2015) 182–191 183

Dziekonski et al. realized numerical results for a setup consisting of a

Fermi GPU (GTX 480) and a Xeon six-core CPU showed that the pro-

posed approach allows one to handle systems involving millions of

unknowns and reach a speedup factor of almost four compared to the

CPU-only implementation (Dziekonski, 2011). Kerr et al. reported an

empirical evaluation of 25 CUDA applications on four GPUs and three

CPUs leveraging the Ocelot dynamic compiler infrastructure, which

can execute the same CUDA applications on either target (Kerr et al.,

2010). Although the studies mentioned above have shown that the

CPU–GPU heterogeneous combination can provide powerful comput-

ing ability, there are still few solutions that can be used to present a

viable approach to fully utilize the CPU–GPU collaborative computing

ability.

Our team has also conducted many studies on parallelization. Shen

et al. presented a parallel algorithm using a GPU for computer sim-

ulation of electrocardiogram (ECG) based on a 3-dimensional (3D)

whole-heart model (Shen et al., 2009). This study is the basis of our

work. Thereafter, considering that the GPU is unsuited for branch

structure, Shen et al. proposed a GPU-based algorithm that concen-

trates on eliminating branches in computation and optimizes the cal-

culation of electric potentials by means of load-prediction (Shen et al.,

2012). To fully utilize all accelerating components of a computer, Shen

et al. employed parallel computation for computer simulation of ECGs

on a CPU–GPU cluster using a hybrid parallel algorithm with paral-

lel program development tools—MPI, OpenMP, and CUDA (Shen et al.,

2013). That is the basis of the paper about the original concept of Load-

Prediction Scheduling (LPS). This study is focused on accelerating the

ECGs simulation using multiple computing node and multiple accel-

erating components without considering how to adjust the workloads

among multiple devices.

In this paper, we propose an approach to address the issue men-

tioned above. To take full advantage of the computing power of the

CPU–GPU hybrid structure node, it is important to tackle the process

of assigning tasks to achieve the balance of computer loads. In other

words, a method needs to be determined to assign different parts of a

parallel application to the computing components, in order to mini-

mize the overall running time (Xu et al., 2013). We employ the LPS to

parallelize serial calculation with CPU and GPU. Thus, both CPU and

GPU can share the workload reasonably. Because the CPU and GPU’s

computing abilities are different, the approach described in this pa-

per has the ability to adjust its workload scheduling to fully exploit

the computing ability of the CPU and GPU in hybrid environments.

We also embrace Sliding Window Mechanism (SWM) for scheduling

workloads according to the computing ability of the CPU and GPU.

In order to validate our approach, we perform the parallel computa-

tion of electrocardiogram simulation based on the proposed method.

For comparison, we also conduct three additional experiments: se-

rial algorithm, parallel algorithm without SWM, and parallel algo-

rithm with SWM, and demonstrate that our approach’s performance is

the best.

The rest of this paper is divided into four parts. We describe our

approach’s details including LPS and SWM in Section 2. In Section 3,

ECG simulation will be adopted to discuss the effectiveness of our

approach. Section 4 exhibits the experiments of parallelizing ECG

simulation with our LPS and SWM approach.

2. LPS and SWM

Before conducting parallel computing, the important point to be

considered first is data dependency. Data dependency means that

each step of the serial algorithm needs the previous step’s result as

input parameter. Such algorithm cannot fully utilize all the calculating

components.

There are many methods on solving data dependency between

steps. In this paper, in order to address the data dependency issue,

Fig. 1. Types of workload order.

the instance of ECG simulation that will be described in detail in

Section 3.

On the other hand, if all steps in the workload order are isolated,

the issue is how to allocate the workload of each step to different

computing components. Workloads are one of the important sources

of parallelism in scientific computing programs and therefore a lot of

research was focused in this area (Wu et al., 2012). A step’s workload

is called a parallelizable workload if there is no data dependency

among all steps, i.e., workloads can be processed in any order or even

simultaneously (Han and Chronopoulos, 2013). The order of workload

can be roughly divided into four kinds as shown in Fig. 1: constant

workload order in Fig. 1(a), increasing workload order in Fig. 1(b),

decreasing workload order in Fig. 1(c), and random workload order

in Fig. 1(d). In Fig. 1, the y-axis is the amount of workload. The x-axis

represents the step corresponding to the workload, for example, in

Fig. 1(a), the workload amount of xith step is yi.

For achieving a good performance, this paper adopts LPS. LPS con-

tains two stages: pretreatment and scheduling stages. The details are

described as follows.

At first, in order to fully utilize the computing components in the

node, we would like to allocate heavy workloads to the accelerating

component with strong computing ability. Likewise, we would like to

allocate the light workloads to the accelerating component with weak

computing ability. For simplicity, we quote the research conducted

previously to make a hypothesis stating that the CPU’s computing

ability is weaker than that of the GPU (Shen et al., 2009, 2012, 2013).

Therefore, our approach would allocate the heavy workloads to GPU

and assign the light workloads to CPU.

Therefore, a pretreatment stage is needed before employing work-

load scheduling. In view of the different workload order in Fig. 1,

constant workload order, increasing workload order, and decreasing

workload order make it easy to estimate the workloads of certain

parts. However, constant workload order is infrequent, and the most

common situation is the random workload order. Therefore, steps in

the workload order are isolated after addressing the data dependency

issue. Thus, the workload order can be sorted, and the experiments’

result generated by the sorted workload order is correct. In our ap-

proach, pretreatment refers to sorting of the workload in descending

order after addressing the data dependency problem.

After pretreating the workload order, scheduling is the next core

problem of our approach. Before introducing our scheduling ap-

proach, we will discuss the existing scheduling strategies. Gener-

ally, two types of scheduling strategies exist: static scheduling and



https://isiarticles.com/article/79203

