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a b s t r a c t

We are concerned with a class of games in which the players’ strategy sets are coupled by a shared
constraint. A widely employed solution concept for such generalized Nash games is the generalized Nash
equilibrium (GNE). The variational equilibrium (VE) (Facchinei & Kanzow, 2007) is a specific kind of
GNE characterized by the solution of the variational inequality formed from the common constraint and
the mapping of the gradients of player objectives. Our contribution is a theory that provides sufficient
conditions for ensuring that the existence of a GNE implies the existence of a VE; in such an instance, the
VE is said to be a refinement of the GNE. For certain games, these conditions are shown to be necessary.
This theory rests on a result showing the equality of the Brouwer degree of two suitably defined functions,
whose zeros are the GNE and VE, respectively. This theory has a natural extension to the primal–dual
space of strategies and Lagrange multipliers corresponding to the shared constraint. Our results unify
some known results pertaining to such equilibria and provide mathematical substantiation for ideas that
were known to be appealing to economic intuition.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

This paper concerns noncooperative N-player generalized Nash
games (Harker, 1991) (or coupled constrained games (Rosen, 1965))
where players are assumed to have continuous strategy sets
that are dependent on the strategies of their adversaries. Such
games represent generalizations of classical noncooperative games
that have traditionally allowed for strategic interactions between
players to be expressed only through their objective functions. In
a frequently encountered class of generalized Nash games, player
strategies are required to satisfy a common coupling constraint.
These games are called generalized Nash games with shared
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constraints (Facchinei & Kanzow, 2007; Rosen, 1965) and they form
the focus of this paper.

Let N = {1, 2, . . . ,N} be a set of players, m1, . . . ,mN be
positive integers and m =

∑N
i=1 mi. For each i ∈ N , let

Ui ⊆ Rmi represent player i’s strategy set, xi ∈ Ui be his
strategy and ϕi:Rm

→ R be his objective function. We use
the following notation: by x we denote the tuple (x1, x2, . . . , xN),
x−i denotes the tuple (x1, . . . , xi−1, xi+1, . . . , xN) and (yi, x−i)
the tuple (x1, . . . , xi−1, yi, xi+1, . . . , xN). A shared constraint is a
requirement that the tuple x be constrained to lie in a set C ⊆ Rm.
In the generalized Nash game with shared constraint C, player i is
assumed to solve the parameterized optimization problem,

Ai(x−i) minimize
xi

ϕi(xi; x−i)

subject to xi ∈ Ki(x−i).

For each i ∈ N , the set-valued maps Ki:
∏

j≠i R
mj → 2Rmi and the

map K :Rm
→ 2Rm

, are defined as

Ki(x−i) := {yi ∈ Rmi | (yi, x−i) ∈ C}, ∀i ∈ N

and K(x) :=

∏
i∈N

Ki(x−i) ∀ x ∈ Rm (1)

where the notation 2X stands for the set of all subsets of a set X . For
simplicity, we have dropped the sets Ui in the above optimization
problems and have assumed that C is contained in

∏
i∈N Ui.
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Throughout this paper, we denote the game resulting from the
above optimization problems by G. The solution concept applied
to analyze such games is called the generalized Nash equilibrium
(GNE).

Definition 1.1 (Generalized Nash Equilibrium).A strategy tuple x ≡

(x1, x2, . . . , xN) is a generalized Nash equilibrium of G if xi ∈

SOL(Ai(x−i)) for all i ∈ N .

Here SOL(P) refers to the solution set of an optimization problem
P . The GNE is a special case of the social equilibrium proposed by
Debreu (1952) for the case of general coupling constraints; see
also Rosen (1965), Arrow and Debreu (1954) and the recent survey
(Facchinei & Kanzow, 2007) for more on this. We now introduce
another solution concept: the variational equilibrium (VE) which
is a specific kind of GNE defined in Facchinei and Kanzow (2007),
Facchinei and Pang (2009):

Definition 1.2 (Variational equilibrium (VE)). A strategy tuple x
is said to be a variational equilibrium of G if x is a solution of
(VI(C, F)).

The notation (VI(C, F)) denotes a variational inequality with
mapping F and a set C (see Section 1.1), where F :Rm

→ Rm is
the function given by

F(x) = (∇x1ϕ1(x), . . . ,∇xNϕN (x)) ∀ x ∈ Rm, (2)

where ∇xi (henceforth abbreviated as ∇i) denotes the partial
derivative with respect to xi.

The goal of this paper is to provide a theory that gives sufficient
conditions for the VE to be a refinement of the GNE. A refinement
of the set of equilibria of a game is (a) a subset satisfying a certain
rule, where this rule has the property that (b) any game with a
nonempty set of equilibria also possesses an equilibrium satisfying
this rule. Both the refined equilibria and the generating rule
are collectively referred to as the refinement. From an economic
standpoint, the notion of the refinement of an equilibrium is rooted
in the belief that the concept of this equilibrium may be far too
weak to serve as a solution concept. For instance, if the weakness
of the original concept is on the count that certain equilibria have
less economic justification, then a refinement should formalize this
by excluding such equilibria. Refinements of equilibria have been
previously sought in both static and dynamic games: trembling
hand perfect (Selten, 1975) and proper (Myerson, 1978) equilibria
are refinements of mixed Nash equilibria in static finite strategy
games (Başar & Olsder, 1999; Myerson, 1997; Weibull, 1997); the
subgame-perfect Nash equilibrium is a refinement of the Nash
equilibrium of a dynamic game (see Nisan, Roughgarden, Tardos,
and Vazirani (2007, ch. 3.8)). It is known from Facchinei, Fischer,
and Piccialli (2007) that every VE is a GNE. Thus this paper focuses
on showing that, under suitable conditions, the existence of a GNE
implies the existence of a VE.

GNEs of games such as G have properties that, we believe,
warrant a refinement. These games are known to admit a large
number, and in some cases, a manifold of GNEs (see Facchinei and
Kanzow (2007); also Theorem 16 in Appendix A.1). In fact, in the
following example, every strategy tuple in C is a GNE.

Example 1 (Game Where Every Strategy Tuple is a GNE). Consider a
game where player i has real valued strategies and solves

Ai(x−i) minimize
xi

xiℓ(X)

subject to X = α : λi,

where X =
∑

i∈N xi for xi ∈ R for each i ∈ N and λi is
the Lagrange multiplier for the constraint X = α for player i.
Such games arise commonly in network routing problems. The

Karush–Kuhn–Tucker (KKT) conditions characterizing the GNE, x∗,
of this game are given by

(x∗

i ℓ(X
∗))′ = λi, ∀i ∈ N and X∗

= α.

Clearly, every point in the set C = {x | X = α} is a GNE of this
game. Does a subset of these characterize economically justifiable
strategic behavior? �

Another shortcoming of the GNE is that there are settings in
which not every GNE is meaningful from a real-world standpoint.
This shortcoming provides the first motivation for our studywhich
is to present a refinement of the GNE that will retain a set of
GNEs that is smaller, yet economically meaningful, even under
these settings. It may be argued that the VE does indeed possess
such a property. Consider a game similar to that in the above
example where the Lagrange multipliers corresponding to the
shared constraints can be interpreted as prices charged on the
players by an administrator for whom the players are anonymous.
TheVE is also known to be theGNEwith equal Lagrangemultipliers
corresponding to the shared constraint (Facchinei et al., 2007).
Thus for this game the VE has the additional property of being
an equilibrium with uniform prices whereas the GNE corresponds
to one with discriminatory prices. Since players are anonymous
and hence indistinguishable from each other, it is unreasonable
to assume that the administrator can charge discriminatory prices
and the only equilibria that make sense are those where the same
price is charged to all players, i.e. the VE.

Our secondmotivation arises from the need to characterize and
compute GNEs. In general, obtaining a GNE requires a solution of
an ill-posed system which leads to a quasi-variational inequality
in the primal-space and a non-square complementarity problem
in the primal–dual space. The VE, on the other hand, requires the
solution of either a variational inequality (primal space) or a square
complementarity problem (primal–dual space) both of which are
far more tractable objects. To demonstrate this, consider the game
G in which the set C = {x | c(x) ≥ 0, x ≥ 0} for a continuously
differentiable concave function c:Rm

→ Rn. Assuming that
an appropriate constraint qualification holds (Facchinei & Pang,
2003), a vector x is a GNE of G if the KKT conditions for optimality
of xi for problem Ai(x−i) hold for each player i ∈ N , i.e., for each
i ∈ N , xi satisfies

0 ≤ xi ⊥ ∇iϕi(x)− ∇ic(x)Tλi ≥ 0
0 ≤ λi ⊥ c(x) ≥ 0,

(KKTi)

for some Lagrange multipliers λi ∈ Rn corresponding to the
constraint c(·) ≥ 0. Note that λi is a vector in Rn and the index
i corresponds to player i. For u, v ∈ Rn, the notation 0 ≤ u ⊥

v ≥ 0 means u, v ≥ 0 and ujvj = 0 for j = 1, . . . , n. In the
system {KKT1, . . . ,KKTN}, each vector λi, i ∈ N is orthogonal
to the same requirement ‘‘c(x) ≥ 0’’, suggesting that the system
is ill-posed. On the other hand, a VE is a strategy tuple x which
satisfies the above system of equations for some λ := λ1 =

· · · = λN , thereby resulting a square well-posed complementarity
problem. Consequently, it has been common practice (Facchinei &
Kanzow, 2007; Leyffer & Munson, 2005; Pang & Fukushima, 2005)
to compute the VE instead of the GNE.

Let S be the set of games G for which the VE is a refinement
of the GNE and suppose the subset of games for which the VE
exists is denoted by S2. Traditional sufficiency conditions for the
solvability of variational inequalities (such as those in Facchinei
and Pang (2003)) do not exploit the existence of a GNE to show a
solution to (VI(C, F)), thereby limiting computation to only those
cases where the existence of a VE can be claimed independently of
knowledge of the existence of a GNE. We refer to this class as S′

2
and it is a subset of S2.
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