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a b s t r a c t

This paper concentrates on the problem of the existence of equilibrium points for non-
cooperative generalizedN-person games, N-person games of normal form and their related
inequalities. We utilize the K–K–M lemma to obtain a theorem and then use it to obtain a
new Fan-type inequality and minimax theorems. Various new equilibrium point theorems
are derived, with the necessary and sufficient conditions and with strategy spaces with no
fixed point property. Examples are given to demonstrate that these existence theorems
cover areas where other existence theorems break down.
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1. Introduction

In mathematical economics, the main problem for investigating different kinds of economic models is showing the
existence of an equilibrium. A number of authors have proved the existence of an equilibrium in several economic models.
For example, the existence of a Cournot–Nash equilibrium for a normal game was proved by Nash [1]. The notion of a
generalized game (social system) was introduced by Debreu [2] which contains the normal game as a special case and then
proved the existence of an equilibrium. Friedman [3] established a generalization ofNash’s theoremusing the quasiconcavity
assumption on every payoff function. Nikaido and Isoda [4] considered a mapping of individual payoffs into an aggregate
function that guarantee the existence of aNash equilibrium. These results has been further investigated, e.g., see Refs. [5–16].
In this paper,we first introduce the 0-pair-concave conditionwhich unifies theC-quasiconcavity established byHou [11],

the diagonal transfer quasiconcavity (weaker than the quasiconcavity) established by Baye et al. [5], and the C-concavity
(weaker than concavity) established by Kim and Lee [7]. We then utilize the K–K–M lemma to obtain an inequality and
apply this to obtain a new Fan-type inequality and a minimax theorem. After defining the aggregate payoff function and
deriving a key Lemma, we have been able to establish new equilibrium theorems such as Nash, S-Nash, pure-strategy Nash,
and J-dominant-strategy Nash equilibrium theorems for generalized games or normal games. These have been established
with the necessary and sufficient conditions and with topological strategy spaces that do not have the fixed point property.
Examples are given to demonstrate that these existence theorems cover areas in which other existence theorems break
down. In several ways, our theorems generalize the corresponding results of Hou [10], Kim and Lee [9], Kim and Kum [8],
and Baye et al. [5].

2. Preliminaries

Throughout this paper, all topological spaces are assumed to be Hausdorff.
2A denotes the sets of all subsets of A. Let A be a subset of a topological space X . We denote by clXA the closure of A in X .

Let 4n be the standard n-dimensional simplex in Rn+1. If A is a subset of a vector space, we denote this by coA the convex
hull of A. If B ⊂ A and f : A→ R, we denote this by f |B the restriction mapping of f on B.
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Let I = {1, . . . , n} be a set of players. A non-cooperative generalized N-person game is an ordered 3n-tuple Γ =
{X1, . . . , Xn; T1, . . . , Tn; u1, . . . , un}, where for each player i ∈ I , the non-empty set Xi is the strategy set, Ti : X =∏
i∈I Xi → 2Xi is the player’s constraint correspondence, and ui : X → R is the i-th player’s payoff function. Whenever

the player’s constraint correspondence Ti(x) = Xi for all x ∈ X and all i ∈ I , the generalized game is reduced to 2n-tuple
Γ = {X1, . . . , Xn; u1, . . . , un} and is called an N-person game of normal form. The set X is the Cartesian product of the
individual strategy spaces. Denote by Xî =

∏
j∈I\{i} Xj. Denote by xi and xî an element of Xi and Xî, respectively. Denote an

arbitrary point of X by x = (xi, xî), with xi in Xi and xî in Xî. Let J be a non-empty subset of I . Denote XJ =
∏
i∈J Xi and

XĴ =
∏
i∈I\J Xi. Denote by xJ and xĴ an element of XJ and XĴ , respectively. Denote an arbitrary point of X by x = (xJ , xĴ), with

xJ in XJ and xĴ in XĴ . Denote T : X → 2X by T (x) =
∏n
i=1 Ti(x) for all x ∈ X .

A strategy vector x̃ ∈ X is said to be a Nash equilibrium for the generalized N-person game Γ if for each i ∈ I

x̃i ∈ Ti(x̃) and ui(x̃i, x̃î) ≥ ui(xi, x̃î) for all xi ∈ Ti(x̃).

A strategy vector x̃ ∈ X is said to be an S-Nash equilibrium for the generalized N-person game Γ if x̃ is a Nash equilibrium
for Γ and

n∑
i=1

ui(x) ≤
n∑
i=1

ui(x̃,xî) for all x ∈ T (x̃).

Whenever the player’s constraint correspondence Ti(x) = Xi for all x ∈ X and i ∈ I , a Nash equilibrium x̂ ∈ X is said
to be a pure-strategy Nash equilibrium for the N-person game Γ of normal form; an S-Nash equilibrium is said to be an
S-Nash-strategy equilibrium for the N-person game Γ of normal form.
Let J ⊆ I . A strategy vector x̃J ∈ XJ is said to be a J-dominant-strategy if

ui(x̃i, xî) ≥ ui(xi, xî) for all x ∈ X and i ∈ J.

A strategy vector x̃ ∈ X is said to be a J-dominant-strategy Nash equilibrium for the N-person game Γ of normal form; if
x̃ is a pure-strategy Nash equilibrium and x̃J is a J-dominant-strategy.

3. Inequality

Let X be a topological space, and A, Y ⊆ X , A function f : X × Y → R is C-quasiconcave on A (see [11]) if, for any finite
subset {x0, . . . xn} of A, there exists a continuous function φn : 4n → Y such that

f (φn(λ), φn(λ)) ≥ min
i∈I(λ)

f (xi, φn(λ))

for all λ = (λ0, λ1, . . . , λn) ∈ 4n, where I(λ) = {i | λi 6= 0}.
We extend the above concept to a general C-quasiconcave condition in the following:

Definition 3.1. Let X be a non-empty set and Y be a topological space, and A ⊆ X . A function f : X × Y → R is said to be
0-pair-concave on A, if for arbitrary finite points {x0, . . . xn} ⊂ A are given, there is a continuous function φn : 4n → Y such
that

min
i∈I(λ)

f (xi, φn(λ)) ≤ 0

for all λ = (λ0, λ1, . . . , λn) ∈ 4n, where I(λ) = {i | λi 6= 0}.

Using Propositions 1 and 2 in [11] show that the C-quasiconcavity unifies the diagonal transfer quasiconcavity (weaker
than quasiconcavity) [5] and the C-concavity (weaker than concavity) [7]. For the 0-pair-concavity, we have the following
proposition that 0-pair-concavity unifies the C-quasiconcavity [11].

Proposition 3.1. Let X be a topological space, and A, Y ⊆ X. A function f : X × Y → R is C-quasiconcave on A. Define
U : X × Y → R by U(x, y) = f (x, y)− f (y, y) for all (x, y) ∈ X × Y . Then U is 0-pair-concave on A.

Proof. Let {x0, . . . , xn} be a finite subset of A. Since f is C-quasiconcave on A, there is a continuous function φn : 4n → Y
such that

f (φn(λ), φn(λ)) ≥ min
i∈I(λ)

f (xi, φn(λ))

for all λ = (λ0, λ1, . . . , λn) ∈ 4n, where I(λ) = {i | λi 6= 0}. Then

min
i∈I(λ)

U(x̂i, φn(λ)) ≤ 0

for all λ = (λ0, λ1, . . . , λn) ∈ 4n, where I(λ) = {i | λi 6= 0}. This completes the proof. �
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